Cheatography

1.Process Scheduling Cheat Sheet by Mitali Chougule via cheatography.com/128533/cs/25183/

Scheduling Queue

Job Queue: A process when enters a system is put into a *job queue.*

Ready Queue: The process residing in the main memory and ready for execution is put into *ready queue*.

Device Queue: The process waiting for a particular I/O device is put in the *device queue*.

Scheduler

Long Term Scheduler: Also known as *job scheduler* selects process from disk and puts into the main memory.

Short Term Scheduler: Also known as *CPU Scheduler* selects process from memory and allocates a CPU to it.

Medium-Term Scheduler: It is used to remove a process and reduce the degree of multi-programing . Later it can be re-introduced from point where it was left .This is known as *Swapping*.

Priority Scheo Scheduling	duling Round Robin
Each process has a <i>priority</i> .	There is a fixed <i>time quantum</i> .
CPU allocated to the process with higher priority.	Ready queue is treated as <i>circular queue</i> and CPU is allocated to the First process for specific time quantum.
Problem: Starvation of low priority. Solution: Aging.	Problem: If time quantum too large, algorithm works as FCFS.
It can be preemptive or non-pree- mptive.	It is <i>preemptive</i> .

Multilevel Queue Multilevel Feedback Queue

Ready queue is divided	Allow
into: Foreground (inter-	proce
active) process and	one o
Background (batch)	move
process.	next
Foreground implements	Here
Round Robin Scheduling	are s
and Background	acco
implements FCFS.	their

	Allows the
	process from
	one queue to
	move to the
	next queue.
ts	Here processes
g	are separated
	according to
	their CPU burst.

Scheduling Criteria

CPU Utilization: It should be *maximum*.
40% minimum- 90% maximum.

2. Throughput: Number of processes completed per unit time is called *throughput*. It should be *minimum*.

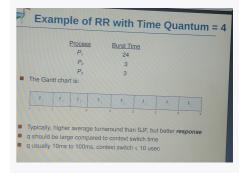
3. Turnaround Time: The interval from time of submission of process to time of completion, *Turnaround Time= period spent waiting + waiting in ready queue + execution time + I/O interrupt time.* It should be *minimum.*

4. Waiting Time: The time for which the process has to wait in the ready queue is *waiting time*. It should be *minimum*.

5. Response Time: Time taken to respond to a process is a *response time*. It should be *minimum*.

SCHEDULING ALGORITHM

Scheduling Algorithm decides which process should the CPU be allocated to. There are *six scheduling algorithms*.

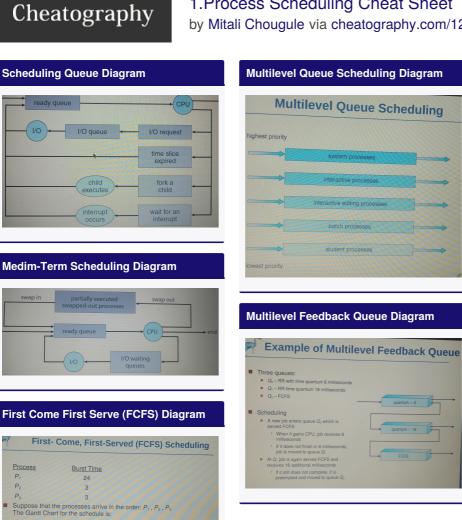

First Come First Serve Shortest Job First

The process that requests for the CPU first, gets the access first.	Each process has the length of the next CPU burst.
FIFO queue is used in handling the process.	The process with smallest next CPU burst gets access to the process.
Long waiting time for the next process.	Comparitively less waiting time for the next process.
lt is a <i>non-pree-</i> <i>mptive</i> algorithm.	It can be <i>preemptive</i> or <i>non-preemptive</i> .

Priority Scheduling Diagram

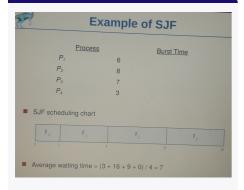
	Process	Burst Time	Priority
	P ₁	10	3
	P ₂	1	3
	P ₃	1	1
		2	4
	P_4	1	5
	P_5	5	2
ority	scheduling Ga	ntt Chart	
2	P 5	P ₁	P ₃ P ₄
1	6		16 18 19

Round Robin Diagram



С

By **Mitali Chougule** cheatography.com/mitalichougule/ Published 11th November, 2020. Last updated 11th November, 2020. Page 1 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com


1. Process Scheduling Cheat Sheet

by Mitali Chougule via cheatography.com/128533/cs/25183/

Shortest Job First (SJF) Diagram

Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$ Average waiting time: (0 + 24 + 27)/3 = 17

By Mitali Chougule cheatography.com/mitalichougule/

Published 11th November, 2020. Last updated 11th November, 2020. Page 2 of 2.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com