Cheatography

Anth 485 Final Exam Cheat Sheet by Missurk via cheatography.com/50689/cs/13966/

Cramer's

V

One-Way ANOVA						
Between- Group Mean Square	Within- Group Mean Square	F-Ratio				
1) (Subtract overall mean of pop from each group's mean) ²	1) (subtract overall mean of pop from each group (sample) mean),	1) [(between group mean square) / (w/in-group mean square)]				
2) (squared difference) (sample size)	2) then multiple each difference by (n-1)	2) if ~ 1, then btwn-groups & w/in-groups variances similar, accept H0				
3) computedegree offreedom(number ofgroups minus1)	3) calculate the grand sum	3) if >1, then reject H0				
4) calculate between- groups mean square = [(btwn-group variance) / (df)]	4) calculate the degrees of freedom total (N-n of groups)					
5) calculate the w/in groups mean square = [(sum of squares) / (degrees of freedom total)]						
 Analysis of Variance (compares means between 3+ samples) Does not indicate which group(s) are different from which other groups (s) Parametric test Bonferroni post hoc test, reveals which specific means differed. Use if ANOVA was sig. using for pairwise comparison It multiplies each of the significance levels from the LSD test by the number of tests performed. If this value is greater than 1, then a significance level of 1 is used. 						

Chi-Square Test 1) Standardi Phi (Φ) calculate zed the Residuals expected requency (E) = [(row Estimation of the set of the se

total)

(column total) / total sample N]					
2) for each cell, find (difference between overserved & expected counts)2	reveal what cell adds the most statistical value to the test.	to measure the strength of associati on of chi- square test	to measure the strength of associati on of chi- square test		
3) divide square difference by expected count for each cell, then sum results		2x2 table	greater than 2x2 table		
4) df $- [(n of rows -1) (n of columns -1)]$					

4) df = [(n of rows -1) (n of columns -1)]

5) check X2 table for significance at @ 0.05 alpha level

- Dependent & Independent

nominal/nominal or nominal/ordinal data

- H0= no relationship between variables; expected counts for each cells = observed counts

- n is greater/equal to 20; no expected

frequencies less/equal to 5 in 20% or more of the cells

Fisher's Exact Test for Chi-Square

-Use when Chi-Square assumptions are violated (>20%) - Very small samples

Not published yet. Last updated 14th December, 2017. Page 1 of 2.

Spearman's Rank Correlation

1) Turn raw scores into ranks	Rho varies from - 1 to +1				
2) find d2 = (difference between rankings)2	-1 (a perfect negative correlation; as X increases, y decreases)				
3) add up all the data in d2 column to obtain sumd2	0 = no association +1 (a perfect positive correlation; as X increases, Y increases				
4) calculation spearman's rank correlation coefficient (rho) rs = [1- (6*sumd2)/N3-N)] df= n-2					
 Measures of associate for two ordinal variables; whether a relationship exists, how strong it is, what is the direction/pattern of relationship) (what happens to one variable, happens to the other variable) Nonparametric version of Pearson 					

correlation coefficient - H0= no sig

independent = x ; dependent = y

Pearson's R Correlation Coefficient

r= Rho = measure of association (-1 to +1)

assumes x and y is normally distr. & linearly related

(Pearson's r)2 = PRE stat (strength of predicting amount of variance in Y based on X)

r2 = % of variance in dependent (Y) explained by independent (X)

usually interval/ratio level data

Parametric vs. Non-parametric Tests				
Parametric	Non-Parametric			
interval or ratio data	nominal and/or ordinal data			
one-way ANOVA	Distribution free			
Pearson's R Correlation	Wilcoxon Signed-Rank Test for Two Related			
Coefficient	Conditions			

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

By Missurk

cheatography.com/missurk/

Cheatography

Anth 485 Final Exam Cheat Sheet by Missurk via cheatography.com/50689/cs/13966/

M: Co W	Parametric vs. Non-parametric Tests (cont)	C	Correlation		
	Mann-Whiteny U Test for Two Independent Conditions	Tests for	Difference between (r) and (r)2	Assumptions	
	Wilcoxon Rank Sum Test for Two Independent Conditions	How well	r=	For each	
	Chi-Square Test		X predicts Y	Pearson's correlation	independent (x), dependent (y)
	Kruskal-Wallis	ı	coefficient = measure of	must be normal	
	Spearman's Rank Correlation				
	Wilcoxon Rank-Sum & Mann-Whitney U			association	
te no	tests	how "tightly the predicted values fit		$r^2 = PRE$	Dependent variable
	nonparametric equivalent of		stat (strength of predicting	variances same for all independent values	
	independent-sample t-test				
	nominal and/or ordinal data		regression line to what degree X covaries with Y	amount of variance in Y based on X) $r^2 = \%$ of variance in dependent (Y) explained by independent (X)	(homoscedasticity) Avoid predictions outside the observed values; beware extremes; relationships must be linear over all values.
	Tests two independent conditions	11			
	Wilcoxon Signed-Rank				
	- Use this test for two related conditions				
	(paired, matched)				
	- ordinal data	v			
	- nonparametric equivalent to the dependent -				
	sample t-test H0 = The two groups are identically				
distributed.					
	Kruskal-Wallis				linear relationship, observes
	nonparametric equivalent of one-way ANOVA				independent (X)

usually, interval/ratio level data

Not published yet.

Page 2 of 2.

Last updated 14th December, 2017.

independent samples

uses chi-square distribution

Regression

Predicts **dependent (y)** based on value of **independent (x)**

nominal or ordinal data, but more than two

Regression Formula: line that makes the sum of squares of the vertical distances of the data points from the line as small as possible

Principle of least-squares - finds estimates of parameters in a stat model based on observed data

y= a + bx; a= y-axis; b= slope

interval/ratio level data assumes linear relationship observes independent (x)

By Missurk cheatography.com/missurk/ Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com