Cheatography

Anth 485 Final Exam Cheat Sheet by Missurk via cheatography.com/50689/cs/13966/

One-Way ANOVA					
Between- Group Mean Square	Within- Group Mean Square	F-Ratio			
1) (Subtract overall mean of pop from each group's mean) ²	1) (subtract overall mean of pop from each group (sample) mean),	1) [(between n group mean square) / (w/in-group mean square)]			
2) (squared difference) (sample size)	2) then multiple each difference by (n-1)	2) if ~ 1, then btwn-groups & w/in-groups variances similar, accept H0			
3) computedegree offreedom(number ofgroups minus1)	3) calculate the grand sum	3) if >1, then reject H0			
4) calculate between- groups mean square = [(btwn-group variance) / (df)]	4) calculate the degrees of freedom total (N-n of groups)				
	5) calculate the w/in groups mean square = [(sum of squares) / (degrees of freedom total)]				
 Analysis of Variance (compares means between 3+ samples) Does not indicate which group(s) are different from which other groups (s) Parametric test Bonferroni post hoc test, reveals which specific means differed. Use if ANOVA was sig. using for pairwise comparison It multiplies each of the significance levels from the LSD test by the number of tests performed. If this value is greater than 1, then a significance level of 1 is used. 					

Chi-Square Test 1) Standardi Phi (Φ) Cramer's calculate zed ٧, the Residuals expected frequency (E) = [(row total) (column total) / total sample N] 2) for each reveal to to cell, find what cell measure measure (difference adds the the the between most strength strength statistical overserved of of value to associati associati & expected counts)2 the test. on of on of chichisquare square test test 3) divide 2x2 greater table than 2x2 square difference table by expected count for each cell, then sum results 4) df = [(n of rows -1) (n of columns -1)]

5) check X2 table for significance at @ 0.05 alpha level

- Dependent & Independent

nominal/nominal or nominal/ordinal data

- H0= no relationship between variables; expected counts for each cells = observed

counts

- n is greater/equal to 20; no expected frequencies less/equal to 5 in 20% or more of

the cells

Fisher's Exact Test for Chi-Square

-Use when Chi-Square assumptions are violated (>20%) - Very small samples

Not published yet. Last updated 14th December, 2017. Page 1 of 2.

Encormon's	Donk	Correlation	
Spearmans	I FIELIK	Correlatio	

1) Turn raw scores into ranks	Rho varies from - 1 to +1			
2) find d2 = (difference between rankings)2	-1 (a perfect negative correlation; as X increases, y decreases)			
3) add up all the data in d2 column to obtain sumd2	0 = no association			
4) calculation spearman's rank correlation coefficient (rho) rs = [1- (6*sumd2)/N3-N)] df= n-2	+1 (a perfect positive correlation; as X increases, Y increases			
- Measures of associate for two ordinal variables; whether a relationship exists, how strong it is, what is the direction/pattern of				

relationship) (what happens to one variable, happens to the other variable) - Nonparametric version of Pearson

correlation coefficient

```
- H0= no sig
```

independent = x ; dependent = y

Pearson's R Correlation Coefficient

r= Rho = measure of association (-1 to +1)

assumes x and y is normally distr. & linearly related

(Pearson's r)2 = PRE stat (strength of predicting amount of variance in Y based on X)

r2 = % of variance in dependent (Y) explained by independent (X)

usually interval/ratio level data

Parametric vs. Non-parametric Tests					
Parametric	Non-Parametric				
interval or ratio data	nominal and/or ordinal data				
one-way ANOVA	Distribution free				
Pearson's R Correlation	Wilcoxon Signed-Rank Test for Two Related				
Coefficient	Conditions				

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

By Missurk cheatography.com/missurk/

Cheatography

Anth 485 Final Exam Cheat Sheet by Missurk via cheatography.com/50689/cs/13966/

Parametric vs. Non-parametric Tests (cont)	Correlation	ı	
Mann-Whiteny U Test for Two Independent Conditions	Tests for	Difference between (r) and (r)2	Assumptions
Wilcoxon Rank Sum Test for Two	How well	r=	For each
Chi Severe Test	X predicts Y	Pearson's correlation coefficient = measure of association	independent (x), dependent (y) must be normal
Chi-Square rest			
Kruskal-Wallis			
Spearman's Rank Correlation			
Wilcower Denk Cum & Menn Whitney II			
tests	how "tightly the predicted values fit regression	r^2 = PRE stat (strength of predicting amount of variance in Y based on X) r^2 = % of variance in dependent (Y) explained	Dependent variable variances same for all independent values (homoscedasticity) Avoid predictions outside the observed values; beware extremes; relationships must be linear over all values.
nonparametric equivalent of			
independent-sample t-test			
nominal and/or ordinal data			
Tests two independent conditions	line		
Wilcoxon Signed-Rank			
- Use this test for two related conditions	to what		
(paired, matched)	covaries with Y		
- ordinal data			
- nonparametric equivalent to the dependent-			
sample t-test		by	
H0 = The two groups are identically distributed.		independent (X)	
Kruskal-Wallis			linear relationship, observes independent (X)
nonparametric equivalent of one-way ANOVA			, /

usually, interval/ratio level data

Regression

independent samples uses chi-square distribution

Predicts dependent (y) based on value of independent (x)

nominal or ordinal data, but more than two

Regression Formula: line that makes the sum of squares of the vertical distances of the data points from the line as small as possible

Principle of least-squares - finds estimates of parameters in a stat model based on observed data

y= a + bx; a= y-axis; b= slope

interval/ratio level data assumes linear relationship observes independent (x)

By Missurk cheatography.com/missurk/ Not published yet. Last updated 14th December, 2017. Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com