\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{miami (miami.faris)} \pdfinfo{ /Title (x-ray-production-10047-10046.pdf) /Creator (Cheatography) /Author (miami (miami.faris)) /Subject (X-ray Production 10047/10046 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A32296} \definecolor{LightBackground}{HTML}{F9F1F8} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{X-ray Production 10047/10046 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{miami (miami.faris)} via \textcolor{DarkBackground}{\uline{cheatography.com/132065/cs/26665/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}miami (miami.faris) \\ \uline{cheatography.com/miami-faris} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 19th February, 2021.\\ Updated 19th February, 2021.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Types of Radiation}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Particulate}} & {\bf{Electromagnetic}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Alpha & X-ray \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} Beta & Gamma \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Neutrons} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Particulate Radiation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{All radiation particles have two features in common: they all have a mass and they are all subatomic particles. Since particles have a mass (and sometimes a charge) = HIGH interaction between radiation and matter. This is one of the reasons particulate radiation is not used for medical imaging; {\bf{low pentating ability}} (we need radiation to pass through the patient and still interact with the patient, but particulate radiation have very high {\bf{Linerar Energy Transfer}} \newline % Row Count 10 (+ 10) {\bf{Alpha Paticles}} \newline % Row Count 11 (+ 1) \textgreater{} released by nuclei of unstable atoms (uranium-238, plutonium-236). \newline % Row Count 13 (+ 2) \textgreater{} consist of 2 protons and 2 neutrons (net positive charge: +2 -{}-\textgreater{} identical to helium atom). \newline % Row Count 15 (+ 2) \textgreater{} high {\bf{L.E.T}}; because of their heavy weight and high charger. \newline % Row Count 17 (+ 2) \textgreater{} can be stopped by a piece of paper \newline % Row Count 18 (+ 1) {\bf{Beta Particles}} \newline % Row Count 19 (+ 1) \textgreater{} two types: electrons and positrons. Both orginate from an unstsbale atom and have high energy and speed \newline % Row Count 22 (+ 3) \textgreater{} Beta+ decay: when excess protons -{}-\textgreater{} proton converts into. Position and neutrino produced. \newline % Row Count 24 (+ 2) \textgreater{} Beta- decay: when excess neutrons -{}-\textgreater{} neturon converts into proton. Electron and antineutrino produced (rearely used in medical imaging) \newline % Row Count 27 (+ 3) \textgreater{} Positrion has low atomic mass, (+1 charge). Low mass and charge = lower LET, higher penetrability compared to alpha particles. \newline % Row Count 30 (+ 3) } \tn \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Particulate Radiation (cont)}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\textgreater{} stopped by a few milimetres of aluminium \newline % Row Count 1 (+ 1) {\bf{Neutrons}} \newline % Row Count 2 (+ 1) \textgreater{} bypoduct of nuclear fission or fusion. \newline % Row Count 3 (+ 1) \textgreater{} similar mass to proton, but no charge% Row Count 4 (+ 1) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Radiation Penetrating Power}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/miami-faris_1613726869_12.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Particulate vs Electromagnetic Radiation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/miami-faris_1613726128_11.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Generator type and Emission Spectrum}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/miami-faris_1613731694_generator.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Change in Generator:}} note that as the efficiency of the generator increases, so does the x-ray quantity given the same amounf of electricity used. This goes back to X-ray circuitry: reduced ripple effect, consistent levels of kVp with high-freequency generator.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Electromagnetic Radiaiton}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{They are chargless and mass-less; "packets of energy" \newline % Row Count 2 (+ 2) * they can travel in straightlines through empty space/vacuum. \newline % Row Count 4 (+ 2) * they are transmitted by electric and magentic fields oscilating at right angles to each other \newline % Row Count 6 (+ 2) * travel at the speed of light (in a vacuum). \newline % Row Count 7 (+ 1) * they are unafected by external magnetic/electric fields \newline % Row Count 9 (+ 2) * wave-particle duality. for medical imaging, we view X-rays and Gamma rays more as a wave. \newline % Row Count 11 (+ 2) * low wavenlengths, high frequencies; higher frequencies = higher energy \newline % Row Count 13 (+ 2) {\bf{X-ray Production}} \newline % Row Count 14 (+ 1) * Created from the interarctions of high-speed (high KE) electrons with target (e.g. tungsten). \newline % Row Count 16 (+ 2) two types: {\emph{charactersitic and bremssthralung radiation}}% Row Count 18 (+ 2) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Charactersitic Radiation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Characteristic radiation involves the fillament electrons interacting with orbital electron of target atom. Created when orbital electrons are removed from their shell and outer-shell elelctrons fill inner-shell vacancies (usually K-Shell electrons that are ejected). To fill vacancy: potential energy is releaserd as a characteristic photon. AKA. since the binding energies differ between orbiting shells: outer-shell electrons (low BE) fills inner-shell vacancy (high BE). Energy released is the difference between the inner-shell BE and outer-shell BE. \newline % Row Count 12 (+ 12) For characteristic radiation to even occur, the incident electron (fillament electron) MUST have a HIGHER than the relevant BE. \newline % Row Count 15 (+ 3) {\bf{resultant characteristic x-rays are specific to certian shell-shell transitions and USUALLY do not provide sufficient energy to even leave the target atom, never mind the patient}}% Row Count 19 (+ 4) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Binding Energies for Tungsten}} \tn % Row 0 \SetRowColor{LightBackground} K Shell & 69.5 keV \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} L Shell & 12.1 keV \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} M Shell & 2.82 keV \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} N Shell & 0.6 keV \tn % Row Count 4 (+ 1) % Row 4 \SetRowColor{LightBackground} O Shell & 0.08 keV \tn % Row Count 5 (+ 1) % Row 5 \SetRowColor{white} P Shell & 0.008 keV \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Charactersitic Radiation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/miami-faris_1613728975_image017.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Filtration and Emission Spectrum}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/miami-faris_1613731482_filter.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Added filtration:}} increases in tube filtration causes a decrease in X-ray beam quantity and an increase in quality, but the energy of characteristic x-rays are unaffected.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Target Material and Emission Spectrum}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/miami-faris_1613731957_materia.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Change in Target Material:}} note that as the atomic number of the material increases, so does the average energy and qunatity of the x-rays and the position of the discrete line (characteristic x-rays) changes. Greater atomic numbers represent 'bigger' targets for the fillament electrons to interact with. This increases the likelihood of interactions and the number of photons produced. The characteristic x-rays are different as they are atom specific.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Bremssthrahlung Radiation}} \tn \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Brems photons are produced when filament electrons miss all of the orbital electrons of the target atoms and interact with the nucleus. The attraction of the fillament electron to the nucleus causes it slow down and change direction. the resultant loss of energy is given off as a brems photon. \newline % Row Count 6 (+ 6) Unlike characteristic x-rays where very specific energies are produced, brems photons have a much larger range of energy levels. {\emph{The amount of directional change imposed on the incident electron dictates the amount of energy released}}% Row Count 11 (+ 5) } \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Important conclusions about X-ray production:}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{1)}} Knowing that the average energy of brems is 1/3 of the kVp selected and that most of the beam is made up of brems: we can predict average energy of an x-ray beam to be 1/3 of the kVp selected} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{2)}} A number of X-rays are at very low energies (\& have no diagnostic value). This highlights need for filtration. Inherent filtration from X-ray tube housing (glass envelope, oil) removes \textasciitilde{}50\% of X-rays generated at the anode. The added filitration of aluminium removes 80\% of THE REMAINDER. this means that there is leakage radiation.} \tn % Row Count 11 (+ 7) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{3)}} X-ray production is not efficient: Most interactions (99\%) do not result in X-rays, but produce only heat. only 1\% of interactions result in X-ray production either by characteristic or brems interactions. Basically, when incident electrons hit the target, 99\% only result in excitation of the target atom's electrons and 1\% results in ionisation.} \tn % Row Count 19 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Brems vs. Characteristic}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/miami-faris_1613729571_good.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{kVp and Emission Spectrum}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/miami-faris_1613731037_kvp.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Change in kVp:}} purple curve (increased kVp), increases the quantity and quality of brems x-rays. It does not change the position of the charactersitic radiation line = does not change the energy of characteristic x-rays, just the quantity of them.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{mAs and Emission Spectrum}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/miami-faris_1613731268_Mas.JPG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Change in mAs/ma:}} increasing mAs or mA will increase the quantity of radiation (because increased current supply to the fillament = more incident electrons hitting the target anode). Increasing mAs/mA has no affect on the quality (average energy) of X-rays and the energy of the characteristic x-rays} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.92234 cm} x{1.3731 cm} x{1.28156 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Factors Affecting Emission Spectrum}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Increase in}} & {\bf{Effect on Quantity}} & {\bf{Effect on Quality}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} mA/mAs & increases & no effect \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} kVp & increases & increases \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} Tube Filtration & decreases & increases \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} Generator type & increases & increases \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} Target Material (atomic number) & increases & increases \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}