Cheatography [

Variable declarations

let variable [: type] = value Define a constant, providing a type.

let variable [: type] = value Defina a variable, providing a type.

Swift inferes types based on the type of contents that is assigned at
creation time. The type declaration is optional.

Comments
/* This is a multiline comment in Swift */
// This is a single line comment in Swift

Comments may be either single or multiline and may even be written
after the last command on a line.

Data types
Int Default Integer value depending on the running platform
Int8 1 Byte =
-127...+127 (signed)
Int32 4 Byte =
-2 147 483 648...+2 147 483 648
Int64 8 Byte =

-9 223 372 036 854 775 808...

+9 223 372 036 854 775 808
Float (~6 digits precision)

1.26°%8..3.4¢*38

Double (~15 digits precision)
2367308 177308
Bool Can be either true or false.

Character Only one character in length.
String Same as character but unlimited in length
Optional Can be either a value (of any type) or no value.

All Int values may be preceded by a capital U to indicate an unsigned
range, which shifts min values to 0 and max values to their double.

By MerlinEIMago
(MerlinEIMago)

Not published yet.

Page 1 of 8.

Last updated 10th October, 2017.

via

Literals

Integer

var myInt = 10 Normal, decimal notation
var myInt = Oxa Hexadecimal notation of 10
var myInt = 0b1001 Binary notation of number 10
var myInt = 0oll Octal notation of number 10
Floating Point

var myFloat = 12.345 Normal, decimal number notation.

var myFloat = 1.2345el Exponential notation of the above

number.

var myFloat = Hexadecimal double (which |

honestly don't use)
String
All characters should be enclosed in double quotes. We may use the
following escape sequences to escape special characters.

\O NULL Character
AR Backslash character

\b Backspace

\f Formfeed

\n Newline

\r Carriage Return

\t Horizontal Tab

\v Vertical Tab

\" Double Quote

\' Single Quote

\055 Character represented by Octal
number 55

\x99 Character represented by Hex-
Number 99

Boolean

true Value is true

false Value is false

nil There is no value

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
http://www.cheatography.com/merlinelmago/
https://apollopad.com

Cheatography [

via

Optionals Operators (cont)
Optionals is actually a new datatype within Swift. As the use and unders- a ! b Is true while only one of a or b is true.
tanding of optionals are of utmost importance, let's have a look at them in Bitwise
depth. o

& Bitwise and.
var myInt : Int? means thatthe variable named my/ntcould contain an
) \ Bitwise or.
integer value but does not have to.
If it does contain a value it will be of type Some(Type), if itdoesn't it will be Bitwise xor.
None ~ Bitwise ones complement.
myInt! inthe code, means that the programmer will make sure that myInt << Bitwise shl.
contains a value of type Some(T). This is called Forced Unwrapping. o Bitwise shr
var myInt : Int! allows anormal use (i.e. the use without ? nor!) of thR .

ssignment

variable in our code. This is called Automatic Unwrapping.

a=">o Assign b to a.
To check if an optional contains an actual value or not, we use a code block
like this one- a +=b Assign a+b to a.
if myInt != nil { //code } else { //code } a-=b Assign a-b to a.
Another technique is called Optional Binding, and allows to check for a value *= b Assign a*b to a.
directly during declaration of the variable: a /= b Assign a/b to a.
if let myInt = myUnce rta inInt { //code } else { //codea N e 2blE.
}

a <<=b Assign a shl b to a.
Operators a >>="> Assign a shrb to a.
Arithmetic a &b Assign aand b to a.
2 * b Multiply a by b. a *=b Assign a xor b to a.
a/ b Divide a by b. a |l=b Assign aor b to a.
as%b Modulus (remainder after /) Range
a +b Add atob. (1..4) Closed range, i.e. 1,2,3,4.
2 - b Substract a from b. (1..<4) Half open range, i.e. 1,2,3.
++a or a++ Pre or post increment. Miscellaneous
——aora-- Pre or post decrement. (a==b) 2 x : y Ternary operator.

. If a is equal to b then return x, if not return
Comparision
y.
a == Ais equal to b.
al!l=b A'is not equal to b. Strings
a>b Ais greater than b. var myString = "" Both create an empty string.
a<b Ais less than b. var myString = String()
2 >= b A is greater or equal to b. var myString = " one " Concatenates two strings, and
i =" " returns "one two".
a<=b A isless or equal to b. myString + to
Logical
a && b Is true while a and b are true.
allb Is true while a or b are true.
By MerlinEIMago Not published yet. Sponsored by ApolloPad.com
(MerlinEIMago) Last updated 10th October, 2017. Everyone has a novel in them. Finish

Page 2 of 8. Yours!

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
http://www.cheatography.com/merlinelmago/
https://apollopad.com

Cheatography

Swift 4 Cheat Sheet
by MerlinEIMago (MerlinElMago) via cheatography.com/32585/cs/10104/

Another wat to concat-
enate two strings.

This inserts a string into
another string. Note that
this is not limited to
strings, but also works
with numbers.

var myString = "one " + " two

var myName = "Tony"

var myGreeting = "Hello \ (myName)"
var myAge = 18

var myGreeting = "Age: \ (myAge)"

myStri ng.i sEmpty

var myString = "two words"
myString.localizedCapitalized

myStri ng.l oc ali zed Low er

case

myStri ng.l oc ali zed Upp er

case

count (myString)

Returns true if empty and
false if not.

Returns "Two Words"

Returns "two words"
(this appears to be no
change, but in fact, all
characters are converted
to lowercase.

Returns "TWO WORDS"

Returns 9

@ Consult: @ Docs for further information.

myArray[0]

Multi-Dimensional Arrays

var myArray:Array<Array<Type>> =

var myArray:[[Typell = [[]]

var myArray = [[Typell ()

Rett
the 1
elen
of th
arra

Array (Array()) San
as

abo
but
mult
dim-
ensi
ally.

myArray.count

myArray.isEmpty

myArray.first
myArray.last

myArray.append (value)

myArray.insert (value at:X)

myArray.remove (at: X)

myArray.index (of: value)

Returns the number of items
go an array.

Returns true if it is empty and
false if not.

Returns first element of array
Returns last element of array

Appends an element to an
array (there are variations to
this)

Inserts value at position X

Removes the element at
position X
Returns the index (i.e.

position) of value inside the
array.

@ Consult: © Docs for further information.

var myDict:

var myDict = [key:value]

for (key,
//code
}

[Type: Type]l = [:

value) in myDict {

] This creates an empty
dictionary.
Creates a dictionary with
given key.value pairs.
Iterate over a dictionary

accessing key.value pairs
in each iteration.

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
https://developer.apple.com/reference/swift/string
https://developer.apple.com/reference/swift/array

var myArray:Array<Type> = Array () This
creates an
empty
array.

var myArray: [Typel = [] Shorthand
method to
create an
array with
values X,
Y and Z

var myArray = [Type] () This is the

shortest of
the
shorthands
available.

var myArray = Array(repeating: X, count: X) This
allows to
create an
array with
a default
value and
a given

size.

By MerlinEIMago Not published yet.

Page 3 of 8.

(MerlinEIMago) Last updated 10th October, 2017.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

http://www.cheatography.com/merlinelmago/
https://apollopad.com

Cheatography [

via

Dictionaries relevant functions and methods Flow control (Decision making) (cont)

myDict.count Returns the The ternary operator is described in the Miscellaneous section of

amount of the Operators block as well. It is basically a very condensed
data pairs if..then statement.
available. Nil-Coalescing oprerator

myDict.is Empty Returns true if (a?2?2Db)

the dictionary Unwraps a and returns it, if it is NOT nil. If it is nil, then b is

is empty. returned.

myDict.up dat eValue(value, forKey: ke Updatesa

) value inside Flow Control (Looping)

LGS for..in This loop, iterates over each of the

myDict.in dex (fo rKey: key) Returns the

for value in array { elements within an array (or dictio-

index where

//code nary) and the variable value takes
given keyis } the value of an element, one at a
located. time.
myDict.re mov eVa lue (fo rKey: key) Removes a for loop

key.value pair. for initCond; chkCond; operator {

@ Consult: for further information. //code
}

ATIEE NI = =L) The for loop basically a counts from
if .else If a is equal to b, the first block of code is an initial condition (/niCond) to an
if a==b { executed. If not, then the last block of end condition (/chkCona) using an

//code code is executed. The else block may be operator to change the value of the
} else { present or not. counter.

// code while loop This code block is executed
} while condition { whenever the condition is true. The
Switch The switch statement checks a variable //code condition thus gets evaluated at the

switch variable {

for a given value. No break statement is

}

beginning.

case 1: needed. If we want a fallthrough to do..while loop This is a special case of the while
//codel happen, we need to specify this in the do { loop, as the evaluation is at the end,

case 2: code block. In this example, case 2 //code instead of the beginning. ! The
//code? always gets executed together with case } while condition code block is executed at least once.
fallthrough 3. The default statement catches all non

case 3: matching cases.
//code 3

default:

//code default
}

Ternary oprerator

(condition) ? valuel : value2

By MerlinEIMago
(MerlinEIMago)

Not published yet.
Last updated 10th October, 2017.
Page 4 of 8.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
https://developer.apple.com/reference/swift/dictionary
http://www.cheatography.com/merlinelmago/
https://apollopad.com

Cheatography [

Flow Control (Statements)

fallthrough As seen before, the fall through statement is used
within the swifch block. It allows tho execute the
next case of the matching section.

continue Continue allows to skip the rest of a iteration and

break This statement allows to break out of a loop. It
skips the rest of a iteration and aborts all
subsequent loops.

Functions

func fName (parameter:Type)->Type {

//code

return Value
}
The function has to return a value of the same type that has been
declaren in it's header. If we don't declare a return value, none has to
be returned. Parameters are optional as well. A function without
return value nor parameters, could look like this:
func fName () {

//code
}

The function parameters may have a label. This would look like this
(only declaration):

func fName (label parameter:Type)->Type {

Per definition, all function parameters are passed as constants, so
they are immutable. If we had to make changes to those parameters
inside our function, and have this changes reflected outside as well,
we'd use infout parameters.

func fName (label parameter:inout Type)->Type {

Variadic parameters allow us to use an undefined amount of
parameters (of the same type) inside our function.

func fName (parameter:Type...)->Type {

And lastly, if we wanted a default value to be assumed for a given
parameter, we'd use:

func fName (label parameter:Type=value)->Type {

@ Consult:

for further information.

By MerlinEIMago
(MerlinElMago)

Not published yet.

Page 5 of 8.

Last updated 10th October, 2017.

via
Closures
{ (Parameters) -> Type in //code }

Same as a function but without a name. Can be passed around in func
let sum= {(nl:Int, n2:Int)->Int in
return nl+n2
}
This would return the sum of two numbers when called like this:
let myResult = sum(2,3)
If the type of variables can be inferred, this is true for the sort(by:) func
writing...
let myElements = ["two","three","four"]
let mySort edE lements =
myElements.sorted(by: {(prml: String, prm2: String
unt})
...we could write (only closure part)...
let mySort edE lements =
myElements.sorted (by: { prml, prm2 in return prml.c !
This would return "three”, "four”,"two". But it doesn't stop here. To write

let mySort edE lements =

myElements.sorted (by: { prml, prm2 in prml.c har act

Instead of declaring variables, names we can also use shorthands for {
var myTest: (Int, Int)->Int

myTest = { SO + S1 }

myTest (1,2) //This would return 3

Swift is even able o infer most of the closure and reduce it to the mininr
let mySort edE lements =

myElements.sorted(by: >)

Occasionaly, if a closure results to be very long, it can be written at the

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Functions.html
http://www.cheatography.com/merlinelmago/
https://apollopad.com

Cheatography [

Closures (cont)

let mySort edE lements =
myElements.sorted () {
$0.cha rac ter s.count < $l.cha rac ter s.count

}

O Consult for further information.

Enums

enum Name {
case Labell [= Value]
case Label2 (Type)
}
Enumeratios are a way of labelling certain values to be used in the
code.
enum Weekdays {
case Mon, Tue, Wed, Thu, Fri, Sat, Sun

}
The way of referring to it is...

var myWeekDay = Weekda ys.Mon

@ Consult for further information.

Structs

struct PointS truct {

var X:Int,

var Y:Int
}
Structs may be used to encapsulate data. They can even have a
initializer to provide the struct with data.
struct PointS truct {

var X:Int,

var Y:Int

init(x: Int, y: Int) {

self. X = x

self.Y = y

}
To declare a variable with this sfruct we would write...
let myPoint = PointS truct(x: 1, y: 2)

Structures are similar to classes with a few important differences,
being the most important one that their instances are always passed
by value.

@ Consult for further information.

Classes

via

Classes (cont)

Objects Can be enumerations, variables or constants.
Declaration can be preceded by: /azy, static, private or
public.

Methods The methods init() and deinit() are special methods

which are called upon instantiation and destruction of the
class.

The method declaration can be preceded by one of the
options: private, public, mutating, class or static

Protocols Protocols do specify a certain blueprint a class conforms
to. See below ¥

Protocols

protocol MyProtocol {
var myVariable : Type { get set }
func myMethod (parameter: Type)->Type

}

A protocol defines a blueprint of methods, properties and other
requirements that suit a particular task or piece of functionality. The
protocol can then be adopted by a class, struct, or enumto provide
an actual implementation of those requirements. Any type that
satisfies the requirements of a protocol is said to conform to that
protocol.

@ Consult: for further information.

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Enumerations.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html

class MyClass : MyProtocol {
var X:Int,
init() {
//code
}
func myMethod () {
//code
}
deinit () {

//code
}

By MerlinEIMago Not published yet. Sponsored by ApolloPad.com
(MerlinElMago) Last updated 10th October, 2017. Everyone has a novel in them. Finish
Page 6 of 8. Yours!

http://www.cheatography.com/merlinelmago/
https://apollopad.com

	Swift 4 Cheat Sheet - Page 1
	Variable declar­ations
	Literals
	Comments
	Data types

	Swift 4 Cheat Sheet - Page 2
	Optionals
	Operators
	Strings

	Swift 4 Cheat Sheet - Page 3
	String relevant functions and methods
	Array relevant functions and methods
	Arrays
	Dictio­naries

	Swift 4 Cheat Sheet - Page 4
	Dictio­naries relevant functions and methods
	Flow Control (Looping)
	Flow control (Decision making)

	Swift 4 Cheat Sheet - Page 5
	Flow Control (Statements)
	Closures
	Functions

	Swift 4 Cheat Sheet - Page 6
	Enums
	Protocols
	Structs
	Classes

