
Swift 4 Cheat Sheet
by MerlinElMago (MerlinElMago) via cheatography.com/32585/cs/10104/

Variable declar​ationsVariable declar​ations

letlet variable [: typetype] = value Define a constant, providing a type.

letlet variable [: typetype] = value Defina a variable, providing a type.

Swift inferes types based on the type of contents that is assigned at
creation time. The type declar​ation is optional.

CommentsComments

/* This is a multiline comment in Swift */

// This is a single line comment in Swift

Comments may be either single or multiline and may even be written
after the last command on a line.

Data typesData types

IntInt Default Integer value depending on the running platform

Int8Int8 1 Byte =
-127...+127 (signed)

Int32Int32 4 Byte =
-2 147 483 648...+2 147 483 648

Int64Int64 8 Byte =
-9 223 372 036 854 775 808...
+9 223 372 036 854 775 808

FloatFloat (~6 digits precision)
1.2e ...3.4e

DoubleDouble (~15 digits precision)
2.3e ...1.7e

BoolBool Can be either true or false.

CharacterCharacter Only one character in length.

StringString Same as character but unlimited in length

OptionalOptional Can be either a value (of any type) or no value.

All Int values may be preceded by a capital U to indicate an unsigned
range, which shifts min values to 0 and max values to their double.

LiteralsLiterals

IntegerInteger

var myInt = 10 Normal, decimal notation

var myInt = 0xa Hexade​cimal notation of 10

var myInt = 0b1001 Binary notation of number 10

var myInt = 0o11 Octal notation of number 10

Floating PointFloating Point

var myFloat = 12.345 Normal, decimal number notation.

var myFloat = 1.2345e1 Expone​ntial notation of the above
number.

var myFloat = Hexade​cimal double (which I
honestly don't use)

StringString

All characters should be enclosed in double quotes. We may use the
following escape sequences to escape special charac​ters.

\0 NULL Character

 \\ Backslash character

\b Backspace

\f Formfeed

\n Newline

\r Carriage Return

\t Horizontal Tab

\v Vertical Tab

\" Double Quote

\' Single Quote

\055 Character repres​ented by Octal
number 55

\x99 Character repres​ented by Hex-
Number 99

BooleanBoolean

true Value is true

false Value is false

nil There is no value

By MerlinElMagoMerlinElMago
(MerlinElMago)

cheatography.com/merlinelmago/

Not published yet.
Last updated 10th October, 2017.
Page 1 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

-38 +38

-308 +308

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
http://www.cheatography.com/merlinelmago/
https://readable.com

Swift 4 Cheat Sheet
by MerlinElMago (MerlinElMago) via cheatography.com/32585/cs/10104/

OptionalsOptionals

OptionalsOptionals is actually a new datatype within Swift. As the use and unders​‐
tanding of optionals are of utmost import​ance, let's have a look at them in
depth.

var myInt : Int? means that the variable named myInt couldcould contain an
integer value but does notdoes not have to.
If it doesdoes contain a value it will be of type Some(Type), if it doesn'tdoesn't it will be
None

myInt! in the code, means that the programmer will make sure that myInt
contains a value of type Some(T). This is called Forced UnwrappingForced Unwrapping.

var myInt : Int! allows a normal use (i.e. the use without ? nor !) of the
variable in our code. This is called Automatic UnwrappingAutomatic Unwrapping.

To check if an optional contains an actual value or not, we use a code block
like this one:
if myInt != nil { //code } else { //code }

Another technique is called Optional BindingOptional Binding, and allows to check for a value
directly during declar​ation of the variable:
if let myInt = myUnce​rta​inInt { //code } else { //code
}

OperatorsOperators

ArithmeticArithmetic

a * b MultiplyMultiply a by b.

a / b DivideDivide a by b.

a % b ModulusModulus (remainder after /)

a + b AddAdd a to b.

a - b SubstractSubstract a from b.

++a or a++ Pre or post increment.

--a or a-- Pre or post decrement.

Compar​isionCompar​ision

a == b A is equalequal to b.

a != b A is notnot equal to b.

a > b A is greatergreater than b.

a < b A is lessless than b.

a >= b A is greatergreater or equal to b.

a <= b A is lessless or equal to b.

LogicalLogical

 a && b Is true while a andand b are true.

a || b Is true while a oror b are true.

Operators (cont)Operators (cont)

a ! b Is true while only oneonly one of a or b is true.

BitwiseBitwise

& Bitwise andand.

| Bitwise oror.

^ Bitwise xorxor.

~ Bitwise ones complementcomplement.

<< Bitwise shlshl.

>> Bitwise shrshr

AssignmentAssignment

a = b Assign b to a.

a += b Assign a+b to a.

a -= b Assign a-b to a.

a *= b Assign a*b to a.

a /= b Assign a/b to a.

a %= b Assign a%b to a.

a <<= b Assign a shl b to a.

a >>= b Assign a shr b to a.

a &= b Assign a and b to a.

a ^= b Assign a xor b to a.

a |= b Assign a or b to a.

RangeRange

(1..4) Closed range, i.e. 1,2,3,4.

(1..<4) Half open range, i.e. 1,2,3.

Miscel​laneousMiscel​laneous

(a==b) ? x : y Ternary operator.
If a is equal to b then return x, if not return
y.

StringsStrings

var myString = ""
var myString = String()

Both create an empty string.

var myString = "​one​"
myString += " two"

Concat​enates two strings, and
returns "one two".

By MerlinElMagoMerlinElMago
(MerlinElMago)

cheatography.com/merlinelmago/

Not published yet.
Last updated 10th October, 2017.
Page 2 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
http://www.cheatography.com/merlinelmago/
https://readable.com

Swift 4 Cheat Sheet
by MerlinElMago (MerlinElMago) via cheatography.com/32585/cs/10104/

Strings (cont)Strings (cont)

var myString = "one " + "​two
​"

Another wat to concat​‐
enate two strings.

var myName = "Tony"
var myGreeting = "Hello \(myName)"

 This inserts a string into
another string. Note that
this is not limited to
strings, but also works
with numbers.

var myAge = 18
var myGreeting = "Age: \(myAge)"

String relevant functions and methodsString relevant functions and methods

myStri​ng.i​sEmpty Returns true if empty and
false if not.

var myString = "two words"

myString.localizedCapitalized Returns "Two Words"

myStri​ng.l​oc​ali​zed​Low​er
case

Returns "two words"
(this appears to be no
change, but in fact, all
characters are converted
to lowercase.

myStri​ng.l​oc​ali​zed​Upp​er
case

Returns "TWO WORDS"

count(myString) Returns 9

Consult:  Docs for further inform​ation.

ArraysArrays

Arrays (cont)Arrays (cont)

myArray[0] Returns
the first
element
of the
array.

Multi-​Dim​ens​ional ArraysMulti-​Dim​ens​ional Arrays

var myArray:Array<Array<Type>> = Array(Array()) Same
as
above,
but
multi-​‐
dim​‐
ens​ion​‐
ally.

var myArray:[[Type]] = [[]]

var myArray = [[Type]]()

Array relevant functions and methodsArray relevant functions and methods

myArray.count Returns the number of items
go an array.

myArray.isEmpty Returns true if it is empty and
false if not.

myArray.first Returns first element of array

myArray.last Returns last element of array

myArray.append(value) Appends an element to an
array (there are variations to
this)

myArray.insert(value at:X) Inserts value at position X

myArray.remove(at: X) Removes the element at
position X

myArray.index(of: value) Returns the index (i.e.
position) of value inside the
array.

Consult:  Docs for further inform​ation.

Dictio​nariesDictio​naries

var myDict: [Type:Type] = [:] This creates an empty
dictio​nary.

var myDict = [key:value] Creates a dictionary with
given key:value pairs.

for (key, value) in myDict {
 //code
 }

Iterate over a dictionary
accessing key:value pairs
in each iteration.

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
https://developer.apple.com/reference/swift/string
https://developer.apple.com/reference/swift/array

var myArray:Array<Type> = Array() This
creates an
empty
array.

var myArray:[Type] = [] Shorthand
method to
create an
array with
values X,
Y and Z

var myArray = [Type]() This is the
shortest of
the
shorthands
available.

var myArray = Array(repeating: X, count: X) This
allows to
create an
array with
a default
value and
a given
size.

By MerlinElMagoMerlinElMago
(MerlinElMago)

cheatography.com/merlinelmago/

Not published yet.
Last updated 10th October, 2017.
Page 3 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/merlinelmago/
https://readable.com

Swift 4 Cheat Sheet
by MerlinElMago (MerlinElMago) via cheatography.com/32585/cs/10104/

Dictio​naries relevant functions and methodsDictio​naries relevant functions and methods

myDict.count Returns the
amount of
data pairs
available.

myDict.is​Empty Returns true if
the dictionary
is empty.

myDict.up​dat​eValue(value, forKey: ke
y)

Updates a
value inside
the dictio​nary.

myDict.in​dex​(fo​rKey: key) Returns the
index where
given key is
located.

myDict.re​mov​eVa​lue​(fo​rKey: key) Removes a
key:value pair.

 Consult:  Docs for further inform​ation.

Flow control (Decision making)Flow control (Decision making)

if..elseif..else
if a==b {
 //code
} else {
 //code
}

If a is equal to b, the first block of code is
executed. If not, then the last block of
code is executed. The else block may be
present or not.

SwitchSwitch
switch variable {
 case 1:
 //code1
 case 2:
 //code2
 fallthrough
 case 3:
 //code 3
 default:
 //code default
 }

The switch statement checks a variable
for a given value. No break statement is
needed. If we want a fallth​rough to
happen, we need to specify this in the
code block. In this example, case 2
always gets executed together with case
3. The default statement catches all non
matching cases.

Ternary opreratorTernary oprerator
(condition) ? value1 : value2

Flow control (Decision making) (cont)Flow control (Decision making) (cont)

 The ternary operator is described in the Miscel​laneous section of
the Operators block as well. It is basically a very condensed
if..then statement.

Nil-Coalescing opreratorNil-Coalescing oprerator
(a ?? b)

 Unwraps a and returns it, if it is NOT nil. If it is nil, then b is
returned.

Flow Control (Looping)Flow Control (Looping)

for..infor..in
for value in array {
 //code
 }

This loop, iterates over each of the
elements within an array (or dictio​‐
nary) and the variable value takes
the value of an element, one at a
time.

for loopfor loop
for initCond; chkCond; operator {
 //code
 }

 The for loop basically a counts from
an initial condition (iniCond) to an
end condition (!chkCond) using an
operator to change the value of the
counter.

while loopwhile loop
while condition {
 //code
 }

This code block is executed
whenever the condition is true. The
condition thus gets evaluated at the
beginning.

do..while loopdo..while loop
do {
 //code
 } while condition

This is a special case of the while
loop, as the evaluation is at the end,
instead of the beginning.  The
code block is executed at least once.

By MerlinElMagoMerlinElMago
(MerlinElMago)

cheatography.com/merlinelmago/

Not published yet.
Last updated 10th October, 2017.
Page 4 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
https://developer.apple.com/reference/swift/dictionary
http://www.cheatography.com/merlinelmago/
https://readable.com

Swift 4 Cheat Sheet
by MerlinElMago (MerlinElMago) via cheatography.com/32585/cs/10104/

Flow Control (Statements)Flow Control (Statements)

fallthrough As seen before, the fall through statement is used
within the switch block. It allows tho execute the
next case of the matching section.

continue Continue allows to skip the rest of a iteration and

break This statement allows to break out of a loop. It
skips the rest of a iteration and aborts all
subsequent loops.

FunctionsFunctions

func fName(parameter:Type)->Type {
 //code
 return Value
}

The function has to return a value of the same type that has been
declaren in it's header. If we don't declare a return value, none has to
be returned. Parameters are optional as well. A function without
return value nor parame​ters, could look like this:

func fName() {
 //code
}

The function parameters may have a label. This would look like this
(only declar​ation):

func fName(label parameter:Type)->Type {

Per defini​tion, all function parameters are passed as constants, so
they are immutable. If we had to make changes to those parameters
inside our function, and have this changes reflected outside as well,
we'd use in/out parame​ters.

func fName(label parameter:inout Type)->Type {

Variadic parameters allow us to use an undefined amount of
parameters (of the same type) inside our function.

func fName(parameter:Type...)->Type {

And lastly, if we wanted a default value to be assumed for a given
parameter, we'd use:

func fName(label parameter:Type=value)->Type {

Consult:  Docs for further inform​ation.

ClosuresClosures

{(Parameters) -> Type in //code }
 Same as a function but without a name. Can be passed around in functions itself or variables.

let sum= {(n1:Int, n2:Int)->Int in
 return n1+n2
}

 This would return the sum of two numbers when called like this:

let myResult = sum(2,3)
 If the type of variables can be inferred, this is true for the sort(by:) function, the closure doesn't have to explicitly declare all types of variables. So instead of

writing...

let myElements = ["two","three","four"]
let mySort​edE​lements =
myElements.sorted(by: {(prm1: String, prm2: String)->
​unt})

 ...we could write (only closure part)...

let mySort​edE​lements =
myElements.sorted(by: { prm1, prm2 in return prm1.c​har​act​ers.count > prm2.c​har​act​ers.co​unt})

 This would return "​thr​ee",​"​fou​r","t​wo". But it doesn't stop here. To write it even shorter, we can skip the return keyword as well.

let mySort​edE​lements =
myElements.sorted(by: { prm1, prm2 in prm1.c​har​act​ers.count > prm2.c​har​act​ers.co​unt})

 Instead of declaring variables, names we can also use shorthands for the parame​ters. This could look like...

var myTest: (Int, Int)->Int
myTest = { $0 + $1 }
myTest(1,2) //This would return 3

 Swift is even able o infer most of the closure and reduce it to the minimum.

let mySort​edE​lements =
myElements.sorted(by: >)

 Occasi​onaly, if a closure results to be very long, it can be written at the end of a header, after the parameter closing parent​hesis.

By MerlinElMagoMerlinElMago
(MerlinElMago)

cheatography.com/merlinelmago/

Not published yet.
Last updated 10th October, 2017.
Page 5 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Functions.html
http://www.cheatography.com/merlinelmago/
https://readable.com

Swift 4 Cheat Sheet
by MerlinElMago (MerlinElMago) via cheatography.com/32585/cs/10104/

Closures (cont)Closures (cont)

let mySort​edE​lements =
myElements.sorted() {
 $0.cha​rac​ter​s.count < $1.cha​rac​ter​s.count
 }

 Consult  Docs for further inform​ation.

EnumsEnums

enum Name {
 case Label1 [= Value]
 case Label2 (Type)
}

 Enumer​atios are a way of labelling certain values to be used in the
code.

enum Weekdays {
 case Mon, Tue, Wed, Thu, Fri, Sat, Sun
}

 The way of referring to it is...

var myWeekDay = Weekda​ys.Mon

Consult  Docs for further inform​ation.

StructsStructs

struct PointS​truct {
 var X:Int,
 var Y:Int
}

 Structs may be used to encaps​ulate data. They can even have a
initia​lizer to provide the struct with data.

struct PointS​truct {
 var X:Int,
 var Y:Int
 init(x: Int, y: Int) {
 self.X = x
 self.Y = y
 }
 }

 To declare a variable with this struct we would write...

let myPoint = PointS​truct(x: 1, y: 2)
 Structures are similar to classes with a few important differ​ences,

being the most important one that their instances are always passedpassed
by valueby value.

Consult  Docs for further inform​ation.

ClassesClasses

Classes (cont)Classes (cont)

ObjectsObjects Can be enumer​ations, variables or constants.
Declaration can be preceded by: lazy, static, private or
public.

MethodsMethods The methods init() and deinit() are special methods
which are called upon instan​tiation and destru​ction of the
class.
The method declar​ation can be preceded by one of the
options: private, public, mutating, class or static

ProtocolsProtocols Protocols do specify a certain blueprint a class conforms
to. See below 

ProtocolsProtocols

protocol MyProtocol {
 var myVariable : Type { get set }
 func myMethod (parameter: Type)->Type
}

A protocol defines a blueprint of methods, properties and other
requir​ements that suit a particular task or piece of functi​ona​lity. The
protocol can then be adopted by a class, struct, or enum to provide
an actual implem​ent​ation of those requir​ements. Any type that
satisfies the requir​ements of a protocol is said to conform to that
protocol.

Consult:  Docs for further inform​ation.

http://www.cheatography.com/
http://www.cheatography.com/merlinelmago/
http://www.cheatography.com/merlinelmago/cheat-sheets/swift-4
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Closures.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Enumerations.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/ClassesAndStructures.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/Protocols.html

class MyClass : MyProtocol {
 var X:Int,
 init() {
 //code
 }
 func myMethod() {
 //code
 }
 deinit() {
 //code
 }
}

By MerlinElMagoMerlinElMago
(MerlinElMago)

cheatography.com/merlinelmago/

Not published yet.
Last updated 10th October, 2017.
Page 6 of 8.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/merlinelmago/
https://readable.com

	Swift 4 Cheat Sheet - Page 1
	Variable declar­ations
	Literals
	Comments
	Data types

	Swift 4 Cheat Sheet - Page 2
	Optionals
	Operators
	Strings

	Swift 4 Cheat Sheet - Page 3
	String relevant functions and methods
	Array relevant functions and methods
	Arrays
	Dictio­naries

	Swift 4 Cheat Sheet - Page 4
	Dictio­naries relevant functions and methods
	Flow Control (Looping)
	Flow control (Decision making)

	Swift 4 Cheat Sheet - Page 5
	Flow Control (Statements)
	Closures
	Functions

	Swift 4 Cheat Sheet - Page 6
	Enums
	Protocols
	Structs
	Classes

