

Linear Relationships Cheat Sheet by maxine3 via cheatography.com/29360/cs/8614/

Formulas	
Straight Line	y=mx+c
Equation of parallel line OR Point of intersection	$y-y^1=m(x-x^1)$
Midpoint	$([x^1+x^2/2],[y^1+y^2/2])$
Distance Formula	$\sqrt{(x^2-x^1)^2+(y^2-y^1)^2}$
Gradient of parallel line	m ¹ =m ²
Gradient of perpendicular line	$m^{1}m^{2}$ =-1 OR m^{2} =-1/ m^{1} & - m^{2} =1/ m^{1}
Gradient	m=rise/run OR m=(y^2 - y^1)/(x^2 - x^1)

Solving Stuff		
Finding a rule for a graph	For: (x^1,y^1) & (x^2,y^2) % Find gradient % Sub into $y^1=m(x-x^1)$	
Finding equation of parallel line	Arrange into y=mx+c Find values of x,y,m Sub into y-y=m(x-x) Solve	
Finding equation of perpendicula r line	Find negative reciprocal of m Substitute (x,y) into y=mx+c Solve for c	
Finding point of intersection	Arrange one of the lines into y=mx+c or x= Sub this into the other line Solve for other coordinate	
Shading Half Planes	>above <below< td=""></below<>	
Horizontal Line	y=b	
Vertical Line	x=a	
Forming Simultaneou s Equations	Define unknowns using pronumerals. Form two equations from the information in the problem. Solve simultaneously. Answer the question in words.	

Solving Stuff (cont)	
Solving Simulta neous	Solve two equations in two pronumerals using: $\$$ substitution when one pronumeral is the subject; e.g. $y = x + 4$. $\$$ elimination when adding or subtracting multiples of equations eliminates one variable.
	for 'through (x,y) perpendicular to x=a, answer y=b e.g perp. tp ugh $(0,3) = y=3$

By maxine3

cheatography.com/maxine3/

Published 17th July, 2016. Last updated 17th July, 2016. Page 1 of 1. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com