
Java for Testers Cheat Sheet
by matiwan via cheatography.com/33684/cs/15111/

Shortcuts IntelliJ

Show Parameters cmd + p

Show JavaDoc ctrl + j

Show shortcuts cmd + j

Show popup definition alt + space

Toggle all methods
body

cmd + shift + -

Expand all methods
body

cmd + shift + '+'

Todo list Todo comment; cmd
+ /

JUnit

Import Junit import org.ju nit.Test;

Dictionary

Auto box ing is the automatic conversion that
the Java compiler makes between the primitive
types and their corres ponding object wrapper
classes. For example, converting an int to an
Integer, a double to a Double, and so on. If the
conversion goes the other way, this is called
unbo xing.

Class- fields, methods change object properties

Instan tiate Class

A static method operates at the class level,
rather than the instance or object level. Which
means that we don’t have to instan tiate the
class into a variable in order to call a static
method.

Superclass

Access control

Constr uctor

access ClassN ame (ar gum ents){
}

Invoking another constr uctor
access ClassN ame (ar gum ents){
this(arg ume nts);
}

Collection interface

Set a collection that does not allow
duplicates

List a collection you can access and add
elements at specific index positions

Map a “key, value” pair where you store an
object in the collec tion, but can access it
with a unique key

Access

public static final String

CONSTANT = "a constant string";

public static String aClass Field =
"a class field";

prot ected static String proField
= "a class field";

public String pubField = "a public

field";

priv ate String privField = "a
private field";

private String name;

privat e/p ubl ic/ pro tected/ packag e-
p riv ate (de fault)

Type of asserts

assert Equals

Switch statement

A switch works with the byte, short, char, and
int primitive data types. It also works with
enumerated types (discussed in Enum Types),
the String class, and a few special classes that
wrap certain primitive types: Character, Byte,
Short, and Integer (discussed in Numbers and
Strings).
The String in the switch expression is
compared with the expres sions associated with
each case label as if the String.equals method
were being used.

Import

Static
usage

import
com.ja vaf ort est ers.do mai nob jec t.T est
AppEnv;
TestEn v.m eth od();

Static
import

import static
org.ju nit.As ser t.a sse rtE quals;
Asse rt. assert Equ als ('a', 'b', 'c');

Inheri tance

Private methods and fields are not accessible
through inheri tance, only the super class’s
prot ected and public fields and methods are
accessible through inheri tance.

JavaDoc

@Test

public void aJavaD ocC omm ent(){
assert Tru e(a ddT woN umb ers (4, 3)==7);
}

 /**
 * Add two integers and return
an int.

 *
 * There is a risk of overflow
since two big

 * integers would max out the
return int.

 *
 * @param a is the first
number to add

 * @param b is the second
number to add

 * @return a+b as an int
 */
public int addTwo Num ber s(int a, int
b){ return a+b;

}

//click at the name of function and

press ctrl+j

By matiwan
cheatography.com/matiwan/

Not published yet.
Last updated 15th June, 2018.
Page 1 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/matiwan/
http://www.cheatography.com/matiwan/cheat-sheets/java-for-testers
https://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html
http://www.cheatography.com/matiwan/
https://apollopad.com

Java for Testers Cheat Sheet
by matiwan via cheatography.com/33684/cs/15111/

Good practices

When you encounter:
• any Java library that you don’t know how to
use
• parts of Java that you are unsure of
• code on your team that you didn’t write and
don’t understand
Then you can:
• read the docume ntation - ctrl + q (ctrl + j on
Mac) or on-line web docs
• read the source - ctrl and click on the method,
to see the source
• write some @Test annotated methods, with
assert ions, to help you explore the
functi onality of the library
When writing the @Test methods you need to
keep the following in mind:
• write just enough code to trigger the
functi onality
• ensure you write assertion statements that
cover the functi onality well and are
readable
• experiment with ‘odd’ circum stances

Design Inheri tance

Inheri tance
class Fruit {
//...
}
class Apple extends Fruit {
//...
}

Design Compos ition

using instance variables that are references to
other objects
class Fruit {
//...

Design Compos ition (cont)

}
class Apple {
private Fruit fruit = new Fruit();
//...
}
In a compos ition relati onship, the front-end
class holds a reference in one of its instance
variables to a back-end class.

https: //w ww.a rt ima.co m/d esi gnt ech niq ues /co mpo i
nh 3.html

By matiwan
cheatography.com/matiwan/

Not published yet.
Last updated 15th June, 2018.
Page 2 of 2.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/matiwan/
http://www.cheatography.com/matiwan/cheat-sheets/java-for-testers
https://www.artima.com/designtechniques/compoinh3.html
http://www.cheatography.com/matiwan/
https://apollopad.com

	Java for Testers Cheat Sheet - Page 1
	Shortcuts IntelliJ
	Collection interface
	Import
	Inheritance
	Access
	JUnit
	JavaDoc
	Dictionary
	Type of asserts
	Switch statement
	Constructor

	Java for Testers Cheat Sheet - Page 2
	Good practices
	Design Inheritance
	Design Composition

