Cheatography

Byte ordering of 0x01234567

Big Endian
1
Litle Endian

Byte representation of ints

INtA=15213;

0x100 0x101 0x102 0x103

[or T 23 as] 67] [|

0x100 0x101 0x102 0x103
| 67 | a5 | 23 | o1 | | |

TA32, x86-64 Sun

Bit operations (integral data type)

01101001 01101001 01101001
& 01010101 | 01010101 4 01010101 ~ 01010101
01000001 01111101 00111100 10101010

Logical operators

— 10x41 = 0x00
— 10x00 = 0x01
— 10x41 = 0x01

~ 0x69 && 0x55 = 0x01
— 0x69 || 0x55 = 0x01

- psa'p (avoids null pointer access)

Unsigned integers

2's complement

for each positive number (X), assign value to
its negative (-X),

such that X + (-X) = 0 with “normal” addition,
ignoring carry out

00101 (5 01001 (9
+ 11011 (5 +10111 (9
00000 (o 00000 (o

By mathildapurr

cheatography.com/mathildapurr/

CSO Cheat Sheet
by mathildapurr via cheatography.com/33013/cs/10300/

's complement Normalized encoding example

Value: Float F = 15213.0;
15213, =11101101101101,
=1.1101101101101, x 283

Two'sComp(x) + x = O

Two’ sComp (x) = ~x + 1

Converting 2's C to decimal

Significand
Mm = 1.1101101101101,

frac= 11011011011010000000000,

Exponent
E z exp-Bias zexp-127 = 13
2 exp= 140 = 10001100,
Converting Binary (2's C) to Decimal Result:
o []0001700] (1 017011011010000000000
1. If MS bit is one, take two's s exp frac
complement to get a positive
number.

2. Get the decimal as if the
number is unsighed (usihg power
of 2s).

3. If original humber was negative,
add a minus sign.

Floating Point Rep

(-1 m 2
Sign bit s determines whether number is negative
or positive
significand M a fractional value
Exponent E weights value by power of two

Encoding

— MSB s is sign bit s
— exp field encodes £
— frac field encodes m

Denormalized encoding

Condition: exp = 000...0

Exponent value: E = 1 - Bias (instead of E = O - Bias)
Significand is: M = 0.xxx...x, (instead of M=1.xxx,)

Cases frac
— exp = 000..0, frac = 000..0

* Represents zero

* Note distinct values: +0 and -0
— exp = 000..0, £rac # 000..0

* Numbers very close to 0.0

Specialized encoding

Condition: exp = 111...1

Case: exp = 111...1, frac = 000...0

- Represents value « (infinity)

- Operation that overflows

- Eg.,1.0/0.0 = -1.0/-0.0 = +», 1.0/-0.0 = -

Case: exp = 111...1, frac # 000...0
- Not-a-Number (NaN)
- Represents case when no numeric value can be
determined
| - E.g.,sqri(-1), 0 -0, » x 0

| s |exp |frac

movq operand combo

. . e . S Dest Src,Dest C Anal
Single precision: 32 bits ource - Des reDes nalog
Reg movg $0x4,%rax temp = 0x4;
l S |exp |frac | fmm Mem movqg $-147, (%rax) *p = -147;
1 sbis 23-bits

movl < Reg Reg movq &rax, drdx temp2 - templ;
Mem

.o . % » (%rdx) P = i
Double precision: 64 bits e e e e
Mem Reg movg (%rax),¥rdx temp = *p;
‘ s |exp |frac |
1 11-bits 52-bits

Normalized encoding

Address computation

D (Rb, Ri,
P

Gipacement pssagater 1SS s
(oot bebigger tan (anyormens 1010
ytes) registers) S%rsp)

Condition: exp z 000..0 and exp z 111..1

referred to as Bias

(1,248

[+ S*| i
Exponenf is: E = Bp- (zl—k-ll__ 1)‘ K is the # of Mem[Reg[Rb] S*Reg[Ri]+ D]
exponent bits - Special Cases

- Single precision: E=exp-127 (Rb Ri) Mem[Reg[Rb]+Reg[Ri]]
- Double precision: E = exp - 1023 D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]
(RbRi,S) Mem[Reg[Rbl+S*Reg[Ri]]

frac Range(E)=[-126,127]
—— Range(E)=[-1022,1023]
Significand is: M = 1.XXX...X,
- Range(Mm) = [1.0, 2.0-¢)
- Get extra leading bit for free

Published 22nd December, 2016.
Last updated 22nd December, 2016.
Page 1 of 4.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/mathildapurr/
http://www.cheatography.com/mathildapurr/cheat-sheets/cso
/uploads/mathildapurr_1482281067_Screen Shot 2016-12-20 at 7.44.12 PM.png
/uploads/mathildapurr_1482281409_Screen Shot 2016-12-20 at 7.49.30 PM.png
/uploads/mathildapurr_1482281625_Screen Shot 2016-12-20 at 7.53.25 PM.png
/uploads/mathildapurr_1482281707_Screen Shot 2016-12-20 at 7.54.52 PM.png
/uploads/mathildapurr_1482281824_Screen Shot 2016-12-20 at 7.56.43 PM.png
/uploads/mathildapurr_1482282050_Screen Shot 2016-12-20 at 7.58.11 PM.png
/uploads/mathildapurr_1482282213_Screen Shot 2016-12-20 at 8.02.53 PM.png
/uploads/mathildapurr_1482370567_Screen Shot 2016-12-21 at 8.34.50 PM.png
/uploads/mathildapurr_1482370873_Screen Shot 2016-12-21 at 8.40.48 PM.png
/uploads/mathildapurr_1482370941_Screen Shot 2016-12-21 at 8.41.36 PM.png
/uploads/mathildapurr_1482370985_Screen Shot 2016-12-21 at 8.42.37 PM.png
/uploads/mathildapurr_1482371054_Screen Shot 2016-12-21 at 8.43.41 PM.png
/uploads/mathildapurr_1482371144_Screen Shot 2016-12-21 at 8.45.16 PM.png
/uploads/mathildapurr_1482371214_Screen Shot 2016-12-21 at 8.46.05 PM.png
/uploads/mathildapurr_1482371272_Screen Shot 2016-12-21 at 8.47.11 PM.png
/uploads/mathildapurr_1482284053_Screen Shot 2016-12-20 at 8.33.56 PM.png
/uploads/mathildapurr_1482283939_Screen Shot 2016-12-20 at 8.31.42 PM.png
http://www.cheatography.com/mathildapurr/
https://apollopad.com

raphy

Multiplication

Unsigned

~ form L: imulq 5, d

setd

~ mltply two 64-bit operands and put the result in 64-bit aperand
— form 2:mulq 5

= one operand is rax

- The other operand given in the instruction

* product is stored in dx (high-order part) and rax (low order par)

S S Fert) ¢ Fer)

Signed
form 1t imulq s, d

Cdisrd

- multiply fwo 64-bit operands and put the result in 64-bit aperand
- form 2:imulq s
- one operand is rax
+ The other operand given in the instruction
- product is stored in rd (high-order part) and rax (low order part
BT Pert) ¢ Fer)

Unsigned
—divgs
« Dividend given in rdx (high order) and rax (low
order)
- Divisor is s
+ Quotient stored in rax
+ Remainder stored in rdx
Signed
— idivg s
« Dividend given in rdx (high order) and rax (low
order)
« Divisor is s
 Quotient stored in rax
« Remainder stored in rdx

SetX dest: only set lower 1 byte of register

lsetx [condition [Description
sete [z¢ [Equal / zero

setne |vzr INot Equal / Not Zero
sets |s¢ INegative

[setas |-sr [Nonnegative

setg |~(sEroF)&~zF |Greater (Signed)

setge |~ (sFoF) (Greater or Equal (Signed)
set1 (SF~OF) [Less (Signed)

setie [(sFrom izr Less

seta |~cre~zr [Above (unsigned)

sets ler [Below (unsigned)

Jumping
lix Condition |Description
" ncondtions
R s 2010
- ot e
e Regave
e ronear oo i
o Twron croser or s e
31 (SF~OF) |Less (Signed)
- oo omigne

2 operand instructions

Format Computation
addq SrcDest Dest = Dest + Src
subg Sre,Dest Dest = Dest - Src
imulg SrcDest Dest = Dest * Src
salg Src,Dest Dest = Dest « Src «—— Also called shig
sarq Src,Dest Dest = Dest » Src «<——Arithmetic
shrg Src,Dest Dest = Dest » Sre <—— Logical
xorq Src,Dest Dest = Dest ~ Src
andg Src,Dest Dest = Dest & Src
orq Src,Dest Dest = Dest | Src

By mathildapurr

cheatography.com/mathildapurr/

CSO Cheat Sheet
by mathildapurr via cheatography.com/33013/cs/10300/

one operand instructions

incg Dest Dest = Dest + 1
decqg Dest Dest = Dest — 1
negqg Dest Dest = — Dest
notqg Dest Dest = ~Dest

useful instruction for division

cqto
» No operands

- Takes the sign bit from rax and
replicates it in rdx

Setting condition codes

The processor does not know if you are using
signed or unsigned integers.
OF and CF are set for every arithmetic operation.

Implicitly setting condition code: addq src,

dest

CF (Carry flag) set if carry out from most significant (31-
s-r)(bif zunsgig) ned over'ﬂ):uw) 9 ¢

ZF (Zero flag) set if £ == 0

SF (Sign flag) set if £ < 0 (as signed)

OF (Overflow flag) set if signed overflow

(a>0 && b>0 && t<0) ||

(a<0 && b<0 && t>=0)

Bad cases for conditional move

Expensive Computations
val = Test(x) ? Hardl(x)

: Hara2(x); |

Both values get computed
Only makes sense when computations are very simple

Risky Computations

val =p ? *p : 0;

Both values get computed
May have undesirable effects

Computations with side effects
val = x > 0 2 x*=7 :

x+=3;

Both values get computed
Must be side-effect free

Effect of operations

Logical CF=0, OF=0
Operations
shift CF=value of last bit shifted

out; OF=0

INC, DEC OF and ZF may change, CF

unchanged

Published 22nd December, 2016.
Last updated 22nd December, 2016.
Page 2 of 4.

Explicitly setting condition codes

cmplb,a a-b result not stored anywhere

testg b, a

When are local variables in stack?

Enough registers

a&b result not stored anywhere

No reference to & so no need to go to memory

No arrays, structures

When P(caller) calls Q

Top Address

ler)

/ Stack Frame of P

Arguments

build area

llee)

Return Address

saved
Registers

Local

Variablas L_ Stack Frame of Q

Arguments
build area

Bottom Address

Structure representation

struct rec { l

int al4];
0 16 4 32

size t i;
struct rec *next;

1

Structure represented as block of memory

— Big enough to hold all of the fields

Fields ordered according to declaration

— Even if another ordering could yield a more compact
representation

Compiler determines overall size + positions of fields

— Machine-level program has no understanding of the
structures in the source code

Procedure data flow

Registers Stack
« First 6 arguments
o oo
srdi
srsi [Arg n
$rdx
fooe
sxox
oxs Arg 8
oxo [Arg 7

+ Only allocate stack space when needed

* When passing parameters on the stack,
all data sizes are rounded up to be
multiple of eight.

+ Return value

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/mathildapurr/
http://www.cheatography.com/mathildapurr/cheat-sheets/cso
/uploads/mathildapurr_1482284208_Screen Shot 2016-12-20 at 8.36.20 PM.png
/uploads/mathildapurr_1482284253_Screen Shot 2016-12-20 at 8.37.11 PM.png
/uploads/mathildapurr_1482283679_Screen Shot 2016-12-20 at 8.26.18 PM.png
/uploads/mathildapurr_1482283741_Screen Shot 2016-12-20 at 8.28.36 PM.png
/uploads/mathildapurr_1482371624_Screen Shot 2016-12-21 at 8.53.08 PM.png
/uploads/mathildapurr_1482371682_Screen Shot 2016-12-21 at 8.54.17 PM.png
/uploads/mathildapurr_1482371770_Screen Shot 2016-12-21 at 8.55.19 PM.png
/uploads/mathildapurr_1482372194_Screen Shot 2016-12-21 at 9.02.45 PM.png
/uploads/mathildapurr_1482371932_Screen Shot 2016-12-21 at 8.58.02 PM.png
/uploads/mathildapurr_1482372822_Screen Shot 2016-12-21 at 9.13.03 PM.png
/uploads/mathildapurr_1482373779_Screen Shot 2016-12-21 at 9.29.04 PM.png
/uploads/mathildapurr_1482374599_Screen Shot 2016-12-21 at 9.42.44 PM.png
/uploads/mathildapurr_1482373855_Screen Shot 2016-12-21 at 9.30.20 PM.png
http://www.cheatography.com/mathildapurr/
https://apollopad.com

Cheat

graphy

CSO Cheat Sheet
by mathildapurr via cheatography.com/33013/cs/10300/

Register usage Cache structure Source code to execution

$rax 3 -
I Object File

— Return value Return value %ra:'z -bJ
— Also caller-saved [srdi II
- Can be modified by [prsi

procedure &

rdx

%rdi, .., $r9 Arguments &
— Arguments B brary
— Also caller-saved [brs ‘
- Can be modified by lkro

procedure T
%$rl0, $rll Caller-saved
— Caller-saved temporaries Bril

— Can be modified by
procedure

Register usage contd

Cache miss

Resolving symbols

3 cases compulsory, capacity, conflict
%rbx, $rl2, $rl3, $rl4 rbx o Gloval - Lol
— Callee-saved Briz . . | Global |
— Callee must save & restore Call d How to block size++, assoc|at|v|ty++, Tt mf[z] =@ o extern int Buf(l;
4rbp Temporaries or13 int main() int *bufp0 = m-\rg
— Callee- d H « static int *bufpl;
Z Calles must save & restore EEL reduce cache size++ == o)
— May be used as frame . [srbp . B Tm X
pointer Special miIss main.c &5 0P
— Can mix & match [rsp External Unker knows 1 Teatpl = sbug(1];
o - . _ bt | e e
~ Special form of callee save Reducing write through (update all) vs write sl = tem;
— Restored }a original vdclue
upon exit from procedure miss back (update when needed)
penalty
) .) Why VM
Popq dest (for stack) multilevel cache (optimize hit
rate L1, miss rate L2) memory permission bits; uses main
Stack “Bottom” .
1 popg Dest $ Replaceme LRU, LFU, FIFO, rand management efficiently(send unneeded to
® Read value at address given by $rsp . .
* Increment zsp by 8 inressing nt policies and protection disk)
= Store value at Dest (must be register) Addresses
Process own add spaces; can't
Cache access time isolation/memor interfere with another's
Stack .
. Grows y protection memory
Stack Pointer: $rsp®-*% Bown -

Stack “Top”

loading linking simplified

VP partitioned to 3 subsets

Why Linkers

Array access

Unallocated not yet created, no data, no

» Basic Principle

Modularity

— Write program as a set of smaller source files,
rather than one giant file

space

TAlLl; _ n one)
Z Array of data type Tand length L fllow for fibraries of common functions (mere on Uncached/cach currently cached/not cached
—Identifier A used as a pointer to array element 0: Type T* + eg., math library, standard C library
int valls); [s 7 1] Efficiency ed
XT xid4 x48 x+12 x+16 - Separate compilation saves time

. ChanEe one source file, compile that file only, and then
relink.

- Libraries save memory space

» Reference Type Value « Common functions can be aggregated into a single file...
val[4] int 3 « Yet executable files contain only code for the functions
val int * x they actually use.
val+l int * x+4
sval(2] int * x+8
val(s] int »

*(val+l) int 5
val + i int * x+ai

By mathildapurr

cheatography.com/mathildapurr/

Published 22nd December, 2016.
Last updated 22nd December, 2016.
Page 3 of 4.

Address translation w page table

it
o nocinmamory
(page)

e o nomber ()| i e o (701

Physical address

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/mathildapurr/
http://www.cheatography.com/mathildapurr/cheat-sheets/cso
/uploads/mathildapurr_1482374002_Screen Shot 2016-12-21 at 9.32.37 PM.png
/uploads/mathildapurr_1482374041_Screen Shot 2016-12-21 at 9.33.27 PM.png
/uploads/mathildapurr_1482373644_Screen Shot 2016-12-21 at 9.26.36 PM.png
/uploads/mathildapurr_1482374201_Screen Shot 2016-12-21 at 9.36.09 PM.png
/uploads/mathildapurr_1482374876_Screen Shot 2016-12-21 at 9.47.37 PM.png
/uploads/mathildapurr_1482374917_Screen Shot 2016-12-21 at 9.48.07 PM.png
/uploads/mathildapurr_1482375001_Screen Shot 2016-12-21 at 9.49.26 PM.png
/uploads/mathildapurr_1482379381_Screen Shot 2016-12-21 at 11.02.31 PM.png
/uploads/mathildapurr_1482379991_Screen Shot 2016-12-21 at 11.12.28 PM.png
/uploads/mathildapurr_1482379532_Screen Shot 2016-12-16 at 5.14.07 PM.png
/uploads/mathildapurr_1482380569_Screen Shot 2016-12-21 at 11.22.05 PM.png
http://www.cheatography.com/mathildapurr/
https://apollopad.com

CSO Cheat Sheet
by mathildapurr via cheatography.com/33013/cs/10300/

mem alloc challenges

memory utilization (sum of malloc'd data/heap

size)
s [good performance (malloc/free calls return
1) Processor sends virtual address to MMU ::E ’::L“"a:‘k‘;fw
2-3) MMU fetches PTE from page table inmemory ~ PTEA: PTE Address q u ICk)

4) MMU sends physical address to cache/memory

5) Cache/memory sends data word to processor

ELERET]

Page foul handler

constraints: can't modify malloc'd memory;

can't move malloc'd block

implicit free list with footer and header

couchp kA
= L4 e e Header ——| size 0 a=1:Allocated block
© | vemony a=0: Free block
tof
edand Payload and Size: Total block size
1) Processor sends virtual address to MMU ocks padding
2-3) MMU fetches PTE from page table in memory Payload: Application data
4) Valid bit is zero, so MMU triggers page fault exception in kernel (allocated blocks only)
If VA is invalid, then kill process (STGSEGV) Boundary tag Size 9
IF ¥ has been paged qut fo sk, then swaps in fuited page, wpdte (footer)
. - - - = .
Speed: TLB hit, mem access-1 explicit free list (pointer don't space+)
wua Allocated block Free block
sz |a Size a
Next
Payload and Prev Store next/prev pointers in
padding “payload” of free block.
Does this increase space
size a Size a LR

TLB miss (rare with high assoc): 3 mem
accesses

3pproxmates » best Tt sarch of an entr heap)

size-- multilevel page table classes of exceptions
If a PTE in the level 1 table is null, then e o Sancfome | Ratam b
the corresponding level 2 page table e e
does not even have to exist. 3 F
Foor Vs = e Nevwr e

Only the level 1 table needs to be in
main memory at all times.

The level 2 page tables can be created
and paged in and out by the VM system
as they are needed.

cache and VM T o oo e aro

miste rereved o sk

cache uses PA, since with VA, although can be .

roforsnco:Sogmentaton fault
! narcare ror,

acc d asap, aliasing, 2 VA may map to

same block, would not know which one

By mathildapurr Published 22nd December, 2016. Sponsored by ApolloPad.com
cheatography.com/mathildapurr/ Last updated 22nd December, 2016. Everyone has a novel in them. Finish Yours!
Page 4 of 4. https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/mathildapurr/
http://www.cheatography.com/mathildapurr/cheat-sheets/cso
/uploads/mathildapurr_1482380620_Screen Shot 2016-12-21 at 11.23.03 PM.png
/uploads/mathildapurr_1482380659_Screen Shot 2016-12-21 at 11.23.45 PM.png
/uploads/mathildapurr_1482380775_Screen Shot 2016-12-21 at 11.24.41 PM.png
/uploads/mathildapurr_1482380820_Screen Shot 2016-12-21 at 11.26.25 PM.png
/uploads/mathildapurr_1482380940_Screen Shot 2016-12-21 at 11.27.47 PM.png
/uploads/mathildapurr_1482429304_Screen Shot 2016-12-22 at 12.53.27 PM.png
/uploads/mathildapurr_1482429395_Screen Shot 2016-12-22 at 12.55.47 PM.png
/uploads/mathildapurr_1482429494_Screen Shot 2016-12-22 at 12.57.44 PM.png
/uploads/mathildapurr_1482430887_Screen Shot 2016-12-22 at 1.20.57 PM.png
/uploads/mathildapurr_1482430932_Screen Shot 2016-12-22 at 1.21.47 PM.png
http://www.cheatography.com/mathildapurr/
https://apollopad.com

	CSO Cheat Sheet - Page 1
	Byte ordering of 0x01234567
	2's complement
	Normalized encoding example
	Converting 2's C to decimal
	Byte repres­ent­ation of ints
	Denorm­alized encoding
	Bit operations (integral data type)
	Floating Point Rep
	Logical operators
	Specia­lized encoding
	Encoding
	Unsigned integers
	Precision
	movq operand combo
	Address comput­ation
	2's complement
	Normalized encoding

	CSO Cheat Sheet - Page 2
	Multip­lic­ation
	one operand instru­ctions
	Explicitly setting condition codes
	When are local variables in stack?
	useful instru­ction for division
	Division
	When P(caller) calls Q
	Setting condition codes
	Implicitly setting condition code: addq src, dest
	SetX dest: only set lower 1 byte of register
	Structure repres­ent­ation
	Jumping
	Bad cases for condit­ional move
	Procedure data flow
	2 operand instru­ctions
	Effect of operations

	CSO Cheat Sheet - Page 3
	Register usage
	Cache structure
	Source code to execution
	Cache calcul­ation
	Cache miss
	Register usage contd
	Resolving symbols
	Why VM
	Popq dest (for stack)
	Cache access time
	VP partit­ioned to 3 subsets
	Why Linkers
	Array access
	Address transl­ation w page table

	CSO Cheat Sheet - Page 4
	Page hit
	mem alloc challenges
	page fault
	implicit free list with footer and header
	Speed: TLB hit, mem access-1
	explicit free list (pointer don't space+)
	TLB miss (rare with high assoc): 3 mem accesses
	Seg list
	classes of exceptions
	size-- multilevel page table
	exception examples
	cache and VM

