

by mathildapurr via cheatography.com/33013/cs/10300/

Byte ordering of 0x01234567

Byte representation of ints

Bit operations (integral data type)

01101001	01101001	01101001	
<u>& 01010101</u>	01010101	^ 01010101	~ 01010101
01000001	01111101	00111100	10101010

Logical operators

- 10x41 = 0x00 - 10x00 = 0x01 - 10x41 = 0x01
- 0x69 && 0x55 = 0x01 - 0x69 || 0x55 = 0x01
- p && *p (avoids null pointer access)

Unsigned integers

2's complement

for each positive number (X), assign value to its negative (-X), such that X + (-X) = 0 with "normal" addition, ignoring carry out

2's complement

 $\frac{\mathsf{Two'sComp}(x) + x = 0}{\mathsf{Two'sComp}(x) = -x + 1}$

Converting 2's C to decimal

Converting Binary (2's C) to Decimal

n 2ⁿ

8 256 9 512

- If MS bit is one, take two's complement to get a positive number.
- 2. Get the decimal as if the number is unsigned (using power of 2s).
- 3. If original number was negative, add a minus sign.

Floating Point Rep

 $(-1)^s$ M 2^ε Sign bit s determines whether number is negative or positive Significand M a fractional value Exponent ε weights value by power of two

Encoding

Encoding - MSB s is sign bit s - exp field encodes E - frac field encodes M	
s exp	frac

Precision

Normalized encoding

```
Condition: \exp \neq 000...0 and \exp \neq 111...1

referred to as Bias

Exponent is: E = Exp - (2^{k-1} - 1), k is the # of exponent bits

- Single precision: E = \exp - 127

- Double precision: E = \exp - 1023

Significand is: M = 1.XXX...X_2

- Range(M) = [1.0, 2.0-\epsilon)

- Get extra leading bit for free
```

Normalized encoding example

Denormalized encoding

```
Condition: exp = 000...0

Exponent value: E = 1 - Bias (instead of E = 0 - Bias)

Significand is: M = 0.x_X x_{....} x_2 (instead of M = 1.x_X x_2)

Cases

- exp = 000...0, frac = 000...0

Represents zero

Note distinct values: +0 and -0

- exp = 000...0, frac = 000...0

- xy = 000...0, frac = 000...0

Numbers very close to 0.0
```

Specialized encoding

```
Condition: \exp = 111...1

Case: \exp = 111...1, frac = 000...0

- Represents value \infty (infinity)

- Operation that overflows

E.g., 1.0/0.0 = -1.0/-0.0 = +\infty, 1.0/-0.0 = -\infty

Case: \exp = 111...1, frac \neq 000...0

- Not-a-Number (NaN)

- Represents case when no numeric value can be determined

E.g., sqrt(-1), \infty - \infty, \infty \times 0
```

movq operand combo

Address computation

By mathildapurr

cheatography.com/mathildapurr/

Published 22nd December, 2016. Last updated 22nd December, 2016. Page 1 of 4.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

by mathildapurr via cheatography.com/33013/cs/10300/

Multiplication

Unsigned

- form 1: inude s, d

- form 2: inude s, d

- form 2: inude s, d

- and with yh two 64-bit operands and put the result in 64-bit oper

- form 2: mulg s

- one operand is rea

- the other operand given in the instruction

- the other operand given in the instruction

- the other operand given in the instruction

- the other operand is real to (high-order part) and rex (low order

- the other operand is real to the other operand of the control of the other operand of the other op Signed
form: I imula, s, d
form: I imula, s
form: I imula,

Division

Unsigned

- ony s

 Dividend given in rdx (high order) and rax (low order)

 Divisor is s

 Quotient stored in rax

 Remainder stored in rdx

Signed

- SetX dest: only set lower 1 byte of register

SetX	Condition	Description
sete	2F	Equal / Zero
setne	~ZF	Not Equal / Not Zero
sets	sr	Negative
setns	~SF	Nonnegative
setg	~ (SF^OF) &~ZF	Greater (Signed)
setge	~ (SF^OF)	Greater or Equal (Signed)
setl	(SF^OF)	Less (Signed)
setle	(SF^OF) ZF	Less or Equal (Signed)
seta	~CF&~ZF	Above (unsigned)
setb	CF	Below (unsigned)

Jumping

X	Condition	Description
jmp	1	Unconditional
je	zr	Equal / Zero
ne	~ZF	Not Equal / Not Zero
je	SF	Negative
)ns	~SF	Nonnegative
g	~(SF^OF) 4~ZF	Greater (Signed)
)ge	~(SF^OF)	Greater or Equal (Signed)
)1	(SF^OF)	Less (Signed)
jle	(SF^OF) ZF	Less or Equal (Signed)
ja	~CF4~ZF	Above (unsigned)
ıb	CF	Below (unsigned)

2 operand instructions

Format	Computat	tion
addq	Src, Dest	Dest = Dest + Src
subq	Src,Dest	Dest = Dest - Src
imulq	Src,Dest	Dest = Dest * Src
salq	Src,Dest	Dest = Dest << Src — Also called shiq
sarq	Src,Dest	Dest = Dest » Src ← Arithmetic
shrq	Src,Dest	Dest = Dest » Src ← Logical
xorq	Src,Dest	Dest = Dest ^ Src
andq	Src,Dest	Dest = Dest & Src
orq	Src,Dest	Dest = Dest Src

one operand instructions

Dest Dest = Dest + 1 deca Dest Dest = Dest - 1 nega Dest Dest = - Dest Dest = ~Dest notg Dest

useful instruction for division

- · No operands
- · Takes the sign bit from rax and replicates it in rdx

Setting condition codes

The processor does not know if you are using signed or unsigned integers. OF and CF are set for every arithmetic operation.

Implicitly setting condition code: addq src,

CF (Carry flag) set if carry out from most significant (31-st) bit (unsigned overflow)

ZF (Zero flag) set if t == 0SF (Sign flag) set if t < 0 (as signed) OF (Overflow flag) set if signed overflow (a>0 && b>0 && t<0) || (a<0 && b<0 && t>=0)

Bad cases for conditional move

Effect of operations

Logical	CF=0, OF=0
Operations	
shift	CF=value of last bit shifted out; OF=0
INC, DEC	OF and ZF may change, CF unchanged

Explicitly setting condition codes

cmpl b, a a-b result not stored anywhere testq b, a a&b result not stored anywhere

When are local variables in stack?

Enough registers

No reference to & so no need to go to memory

No arrays, structures

When P(caller) calls Q

Structure representation

Procedure data flow

By mathildapurr

cheatography.com/mathildapurr/

Published 22nd December, 2016. Last updated 22nd December, 2016. Page 2 of 4.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

by mathildapurr via cheatography.com/33013/cs/10300/

Cache structure Cache calculation

g = log2(S) if set index bits
b= log2 (B) if block offset bits

z = m-(g+b) if tag bits

que addresses im = log2(M); if of address bits
es)

int *bufp0 = &buf static int *bufp1

Resolving symbols

rate L1, miss rate L2)

LRU, LFU, FIFO, rand

Replaceme

Why Linkers

nt policies

VP partitioned to 3 subsets	
Unallocated	not yet created, no data, no space
Uncached/cach ed	currently cached/not cached

By mathildapurr cheatography.com/mathildapurr/

Published 22nd December, 2016. Last updated 22nd December, 2016. Page 3 of 4. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours! https://apollopad.com

by mathildapurr via cheatography.com/33013/cs/10300/

page fault

2-3) MMU resolutions and Virigers page fault exception in kerner If VA is invalid, then kill process (\$1656EV) If VA has been paged gut 1 of liefs, then swops in faulted page, update page table, resolute faulted process

If a PTE in the level 1 table is null, then the corresponding level 2 page table does not even have to exist.

Only the level 1 table needs to be in main memory at all times. The level 2 page tables can be created and paged in and out by the VM system as they are needed.

cache and VM

cache uses PA, since with VA, although can be accessed asap, aliasing, 2 VA may map to same block, would not know which one

By mathildapurr cheatography.com/mathildapurr/

mem alloc challenges

memory utilization (sum of malloc'd data/heap

good performance (malloc/free calls return

constraints: can't modify malloc'd memory; can't move malloc'd block

Published 22nd December, 2016. Last updated 22nd December, 2016. Page 4 of 4.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com