Cheatography

Stoichiometry (IB Chem Chapter 1) Cheat Sheet by Maryam.Razvi via cheatography.com/181035/cs/37643/

Formulas	
No. of molecules = n [no. of moles] x A [Avogadro's Constant]	No. of moles (n) = Mass (m)/ Molar Mass (Mr)
No. of Atoms = No. of Molecules [n x A] x Atomicity	No. of moles (n) = Volume (dm3) / Molar volume (STP or RTP)
% yield = [Exper- imental yield/ Theoretical Yield] x 100	C [molarity] = no. of moles [n]/ Volume c concentration [v]
ldeal Gas Law - PV = nRT	Volume/concentr- ation constant - C1V1 = C2V2

Finding Percentage Yield of a Reaction

Note: % yield always applies on PRODUCTS

1: In any situation, first determine which of the products is the limiting reagent

2: Using the compound which is limiting, form a ration such that [limiting reactant : product]

3: Under the ratio, write the coefficient ratio of reactant : product

4: Add the molar mass OF 1 MOLE

5: Multiply the Molar mass with the number of moles = mass value

6: Cross multiply to find the THEORETICAL YIELD

7: Use the mass of the product given in the question - (EXPERIMENTAL YIELD)

8: Substitute in the formula: [Experimental Yield/ Theoretical Yield] x 100 to find % yield

By Maryam.Razvi

cheatography.com/maryamrazvi/

How to Find the Limiting Reagent

Step 1: Write down the whole equation
Step 2: Balance the entire equation
Step 3: Using the balanced equation, determine the coefficient ratio of the reactants
Step 4: Write down the ratios of the values given in the question
Step 5: Convert the amounts to moles
Step 6: divide the values (mole ratio / coeff cient ratio)
Ans: The smallest value is the limiting reagent
ldeal Gas Law
PV = nRT; where
P - Pressure (Pa)

 $V = Volume (m^3)$

T - Temperature (K) *Take celsius value and + 273

R - Constant (8.31 JK/mol)

n - no. of moles (mol)

Molar Volume Values

STP - Standard	RTP - Room
Temperature and	Temperature and
Pressure	Pressure
Temp.: 0 degrees	Temp.: 20 degrees
Celsius	Celsius
Pressure: 1 atm	Pressure = approx.
	1atm
Volume: 22.7 dm3	Volume: 24 dm3

Ideal Gas vs. Real Gas

Ideal Gas	Real Gas
Obeys all gas laws	All properties change
No forces of attraction	Forces of attraction
Collide in straight lines	Collision in random motion
No mass or volume	
High Temperature	Low Temperature
Low Pressure	High Pressure
High Volume	Low Volume

Steps to Find a Standard Solution

Standard Solution: a solution of accurately known concentration

Step 1: Weigh a known amount of solute

Step 2: Dissolve the Solute in a minimal amount of water

Step 3: Transfer the solution to a volumetric flask without washing

Step 4: Make the solution fill the flask till the meniscus reaches accurate value

Step 5: Place stopper and invert into mix solution

Not published yet. Last updated 12th March, 2023. Page 1 of 1. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com