\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{bob (martinna)} \pdfinfo{ /Title (biology-midterm-chapters-6-7.pdf) /Creator (Cheatography) /Author (bob (martinna)) /Subject (Biology Midterm chapters 6-7 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Biology Midterm chapters 6-7 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{bob (martinna)} via \textcolor{DarkBackground}{\uline{cheatography.com/43135/cs/12891/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}bob (martinna) \\ \uline{cheatography.com/martinna} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 2nd October, 2017.\\ Updated 2nd October, 2017.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Energy, Enzymes \& Biological Reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Biogentics:} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Principles of thermodynamics applied to reactions and process of cells. Allows insight into how cells handle energy transactions.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{System + Surroundings:} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Closed: no energy exchange Open: energy can be added or removed Every change produces either heat or work} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{For Thermodynamic Measurements:} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Standard conditions pH=7, T=25 degrees C, 1 Atm, Pressure State usually constant under biological conditions} \tn % Row Count 12 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{First law of thermodynamics:} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Energy cannot be created or destroyed, but it can be changed from one form to another.} \tn % Row Count 15 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Second law of thermodynamics:} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Whenever changes form, entropy increases. Whenever energy changes form, some energy is lost ( unusable by the organism. Energy is conserved as a whole, but not in any system doing work.} \tn % Row Count 20 (+ 5) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Metabolism:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}the sum of all chemical reactions in an organism a {\bf{balance}} between reactions which release energy and those that require energy} \tn % Row Count 24 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Catabolism:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}food molecules broken down to release energy} \tn % Row Count 26 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Anabolism:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}complex organic molecules synthesized from simpler ones- energy input is needed} \tn % Row Count 29 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Enzymes:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Guide metabolic pathways} \tn % Row Count 31 (+ 2) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Energy, Enzymes \& Biological Reactions (cont)}} \tn % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Gibb's Free Energy:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Energy released that is available to do useful work} \tn % Row Count 3 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Spontaneous}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}processes cocue without energy input, and increase entropy.} \tn % Row Count 6 (+ 3) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Non-spontaneous:}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}processes require energy input} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Biological Order \& Disorder}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Energy flows into ecosystems as sunlight and exits as} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{heat}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Living organisms}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}Convert sunlight to chemical energy. Use this chemical energy to do work. Generate heat and disorder on the process (increases entropy)} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Entropy}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}may decrease in living things (living things show order), but the total entropy of the universe increases in the process} \tn % Row Count 11 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Life}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}uses energy to create order but thus energy also creates disorder.} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Free- Energy Change, ∆G}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Gibbs Free energy G}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}the energy in a system that can do work. The change in free energy (∆G) during a reaction.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Whether the reaction will be}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}{\bf{Spontaneous}} and release energy (exergonic) or be {\bf{Non spontaneous}} and store energy (endergonic)} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{∆G=}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}∆H-T∆S} \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{∆H}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}is the change in total energy (enthalpy)} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{∆S}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}is the change in entropy} \tn % Row Count 13 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{T}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}is the temperature in kelvin (k=C+273.15)} \tn % Row Count 15 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{∆G=}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}the reaction is spontaneous, exergonic, and provides energy for work.} \tn % Row Count 18 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Enzymes}}} \tn \mymulticolumn{1}{x{5.377cm}}{\hspace*{6 px}\rule{2px}{6px}\hspace*{6 px}speed up reactions, but don't change ∆G} \tn % Row Count 20 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Mitochondria and ATP}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Animals, plats, fungi, and most protists depend on mitochondria for energy to grow and survive.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{ATP forms in mitochondria as stored chemical energy available to do cellular work} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{harvested from energy released in reactions that break down food molecules.} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cellular Respiration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Collection of metabolic reactions that breakdown food molecules and stores energy as ATP} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.14425 cm} x{1.69349 cm} x{1.73926 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Aerobic and Anaerobic respiration}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Aerobic respiration:}} & Form of cellular respiration in eukaryotes and many prokaryotes & Oxygen is needed in the ATP producing process \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} {\bf{Anaerobic respiration:}} & Form of cellular respiration in some prokaryotes & A molecule other than oxygen, such as sulfate of nitrate, is used in the ATP producing process \tn % Row Count 12 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Oxidation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The removal of electrons from a substance} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The substance from which the electrons are removed (The electron donor) is {\bf{oxidized}}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Stored Energy is released}}} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Reduction}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The addition of electrons to a substrate} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{the substrate the receives the electron ( the electron acceptor) is {\bf{reduced}}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Energy is stored}}} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Redox Reactions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Oxidation and reduction reactions always coupled {\bf{Redox Reactions}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Reactions that move electrons from a donor molecule and simultaneously add them to an acceptor molecule} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Summary: Cellular Respiration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Cellular respiration includes reactions that transfer electrons from organic molecules (such as glucose) to oxygen, and reactions that make ATP} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{C} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{6H} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Electrons carriers such as NAD+}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{move electrons from fuel molecule to cellular destinations} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1st stage of Glycolysis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Enzymes break a 6-carbon molecule of glucose into two 3 carbon molecules of pyruvate} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Some ATP is synthesized by {\bf{substrate-level phosphorylation}} an enzyme catalyzed reaction that transfer a phosphate group from a substrate to ADP} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Some electrons are carried away by NADH} \tn % Row Count 6 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{2nd stage of Pyruvate oxidation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Enzymes convert the 3-carbon pyruvate into a 2-carbon acetyl group, which enters the {\bf{citric acid cycle}} and is completely oxidized to carbon dioxide} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Some ATP is synthesized during the citric acid cycle} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Lots of reduced electrons carriers carry away electrons as NADH and FADH} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{3rd Stage Oxidative Phosphorylation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{High energy electrons are delivered to oxygen by a sequence of reduced electron carriers in the {\bf{electron}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Free energy released by electrons flow generates on H gradient by {\bf{chemiosmosis}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ATP synthase}} uses the H gradient as the energy source to make ATP} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Substrate level Phosphorylation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Occurs when enough energy is released in a reaction step to pass phosphate onto ADP} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Glycolysis: Splitting Sugar in half}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Glycolysis (Embden-Meyerhof pathway) breaks 6-carbon glucose into two molecules of 3 carbon pyruvate in 10 sequential enzyme catalyzed reactions} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Glycolysis takes place in the cystol of all organisms} \tn % Row Count 5 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Energy flow in glycolysis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The initial steps of glycolysis require energy 2 ATP are hydrolyzed} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{4 ATP are produced by substrate-level phosphorylation for a net gain of 2 ATP} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The electron carrier NAD+ is reduced to NADH, which carries 2 electrons and a proton (H+) removed from fuel molecules} \tn % Row Count 7 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Pyruvate Oxidation and the Citric Acid Cycle}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Active transport moves pyruvate into mitochondria matrix where pyruvate oxidation and the citric acid cycle take place} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Oxidation pyruvate generates CO {\bf{acetyl-coenzyme A(acetylcoA),}} and NADH} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The acetyl group of acetyl-COA enters the citric acid cycle} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Overview of citric acid cycle}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Citric acid cycle}}, carbon products of pyruvate oxidation are oxidized to CO} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{All viable electrons are transferred to 3NAD+ (NADH) and 1FAD (FADH} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Each turn of the citric acid cycle produces 1 ATP by substrate-level phosphorylation} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Summary: The citric acid cycle}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The eight reactions of the {\bf{citric acid cycle (tricarboxylic acid cycle, or krebs cycle)}} oxidize acetyl groups completely to CO generate 3 NADH and 1 FADH and synthesize 1 ATP by substrate level phosphorylation} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1 acetyl-CoA+3 NAD + 1 FAD + 1 ADP + 1Pi + 2H} \tn % Row Count 6 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{2CO} \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Oxidative Phosphorylation ETS \& Chemiosmosis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{High energy electron removed from fuel molecules and picked up by carrier molecules-are released into the electron transfer system of mitochondria} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Mitochondrial electron transfer system (ETS)}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Series of electron carriers that alternately pick up and release electrons and ultimately transfer them to their final acceptor-oxygen} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Electron Flow}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Individual electron carriers of the ETS are organized specifically from high to low free energy} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{NADH and FADH contain the most free energy and are easily oxidized} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The terminal electron acceptor (O ) is most easily reduced} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Electron movement through the system is spontaneous, releasing free energy} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Electron Transfer System from high to low free energy}}} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Energy Flow in the ETS}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{In the ETS electrons release free energy used to build the H gradient across the inner5 mitochondrial membrane} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{High H concentration in the inter membrane compartment} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Low H concentration in the matrix} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The H gradient supplies energy that drives ATP synthesis by mitochondria ATP synthase} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Transfers Between Proteins}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Two small, mobile electron carriers, cytochrome C and ubiquinone (coenzyme Q) shuttle electrons between the major complexes} \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cytochromes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Proteins with a neme prosthetic group that contains an iron atom that accepts and donates electrons} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Forming the H Gradient}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Ubiquinone and complexes I, III, and IV actively transport protons (H ) from matrix to inter membrane compartment} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Concentration of H in the inter membrane compartment generates an electrical and chemical gradient across the inner mitochondrial membrane} \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Proton-motive force}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Stored energy produced by proton and voltage gradient} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Energy is used for ATP synthesis and cotransport of substances to and from mitochondria} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{ATP Synthase and Chemiosmosis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{In the mitochondrion, ATP is synthesized by ATP synthase, an enzyme embedded in the inner mitochondrial membrane} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The H gradient powers ATP synthesis by ATP synthase by {\bf{chemiosmosis}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{ATP synthase uses proton-motive force to add phosphate to ADP to generate ATP (phosphorylation)} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{ATP synthase structure and function}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{A basal unit in the inner membrane is connected by a stalk to a headpiece located in the matrix- a peripheral stator bridges the basal unit and headpiece} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Proton-motive force moves protons in the inter membrane space through the enzyme's basal unit into the matrix} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{H flow powers ATP synthesis by rotation of the ATP synthase headpiece (chemiosmosis)} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Conservation of chemical Energy}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Hydrolysis of ATP to ADP yields about 7.0 kcal/mol-total energy conserved in 32 ATP is about 224 kcal/mol} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Glucose burned in the air releases 686 kcal/mol} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Efficiency of cellular glucose oxidation (224/686*100) = 33\%} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The rest of the chemical energy is released as body heat} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Fermentation can re-oxidize NADH}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{When oxygen is absent or limited, electrons carried by the 2 NADH produced by glycolysis may be used in fermentation} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Otherwise, glycolysis will stop due to lack of NAD} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Recall:NAD accepts electrons in reaction 6 of glycolysis} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Fermentation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Electrons carried by NADH are transferred to an organic acceptor molecule (convert NADH to NAD )} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Glycolysis continues to supply ATP by substrate level phosphorylation} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Lactate fermentation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Converts pyruvate into lactate} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Occurs in some bacteria, plant tissues, skeletal muscle} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Used to make buttermilk, yogurt, dill pickles} \tn % Row Count 4 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Alcoholic fermentation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Converts pyruvate into ethyl alcohol and CO} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Occurs in some plant tissues, invertebrates, protists, bacteria, and single-celled fungi such as yeasts} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Used to make bread and alcoholic beverages} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Interrelationships of Catabolic Anabolic Pathways}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Many carbohydrates, lipids, and proteins can be hydrolyzed and their products are directed into various stages of cellular respiration to be oxidized as fuel} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{CoA directs products of many oxidative pathways into the citric acid cycle} \tn % Row Count 6 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Oxidation of Fats}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Oxidation of fats produces more than twice the energy of oxidation of proteins or carbohydrates} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Before entering oxidative reactions, triglycerides are hydrolyzed into glycerol and individual fatty acids} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Oxidation of proteins}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The amino group is removed} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The remainder enters oxidative pathways as pyruvate, acetyl-CoA, or intermediates of the citric acid cycle} \tn % Row Count 4 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Many Pathways Start Glycolysis or the Citric Acid}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Glycolysis and the citric acid also supply molecules from which many other cellular molecules are synthesized} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Additionally, when energy is not needed by the body, glucose can be synthesized from intermediates of these pathways in the process of {\bf{gluconeogensis}}} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Gluconeogenesis: which consumes ATP rather than producing it} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Glycolysis and Citric acid Cycle Regulation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{ATP and NADH production are balanced against glucose conservation by systems that regulate enzymes of glycolysis and the citric acid cycle} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{If excess ATP is present in cytosol, ATP binds to phosphofructokinase (in reaction 3) slowing or stopping enzyme action by feedback inhibition in order to regulate glycolysis} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{If excess ATP or citrate is present in the mitochondria, one of these binds to citrate synthase, slowing or stopping enzyme action by feedback inhibition in order to regulate the citric acid cycle} \tn % Row Count 11 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}