

Bonds and Crystal Structures of Metals Cheat Sheet by marrgotthewise (marrgotthewise) via cheatography.com/113347/cs/21691/

Types of Bonds						
Primary						
Ionic	Electron transfer.	Non-directional				
Covalent	Electron sharing.	Directional, strong, brittle, high melting temps, less conductive.				
Metallic	"Sea of electrons."	Ductile, conductive.				
Secondary	(van der Waals)					
	atom 1	atom 2				
London	induced dipole	induced dipole				
Debye	permanent dipole	neutral (non-polarized)				
Keesom	permanent dipole	permanent dipole				

,	
tle,	
g	
3	

	ļ
onal	I
	F
le,	(
9	(
	(
	(
	(
	I
	L
ole	ı
	1
	F
zed)	5

6 Metals

[1, Tab 3.1]

Tungsten

Zinc

A collection of points arranged on a periodic pattern so that the surroundings of each lattice point are identical.

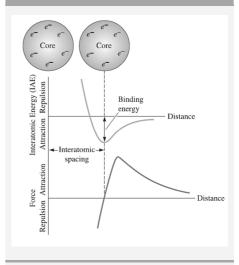
Metal Crystal **Atomic** Structure Radius (nm) Aluminum FCC 0.1431 Cadmium **HCP** 0.1490 Chromium BCC 0.1249 Cobalt **HCP** 0.1253 Copper FCC 0.1278 Gold **FCC** 0.1442 BCC 0.1241 Iron **FCC** 0.1750 Lead Molybdenum 0.1363 BCC Nickel **FCC** 0.1246 Platinum 0.1387 FCC Silver **FCC** 0.1445 Tantalum **BCC** 0.1430 Titanium **HCP** 0.1445

Miller Index From Direction

BCC

HCP

0.1371


0.1332

- 1. Using a right-handed coordinate system, find the coordinates of TWO points that lie in the direction.
- 2. Subtract the "tail" point from the "head" point.
- 3. Clear fractions and/or reduce the results from step 2 to the lowest integers.
- 4. Enclose the numbers with brackets []. If a negative number is present, use a bar over the number.

Plane From Miller Index

- 1. Look at the plane, determine where the plane intersects the various axes (X, Y, and Z intercepts).
- 2. Verify that the origin does not intersect with the plane.
- 3. Take reciprocals.
- 4. Clear fractions (if needed).
- 5. Any negative numbers? Use the overbar.
- 6. Enclose final result in parentheses.

E of Various Crystallographic Directions						
	Young's Modulus (GPA)					
Metal	[100]	[110]	[111]			
Aluminum	63.7	72.6	76.1			
Copper	66.7	130.3	191.1			
Iron	125.0	210.5	272.7			
Tungsten	384.6	384.6	384.6			

Equilibrium separation occurs when the total energy is minimized and also when the net force is zero.

Lattice

By marrgotthewise (marrgotthewise)

cheatography.com/marrgotthewise/

Not published yet. Last updated 2nd February, 2020. Page 1 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Bonds and Crystal Structures of Metals Cheat Sheet by marrgotthewise (marrgotthewise) via cheatography.com/113347/cs/21691/

Coefficient of Thermal Expansion

- \rightarrow CTE = α
- $\rightarrow \Delta L/L_0 = \alpha (T_2 + T_1)$
- \rightarrow Metal CTE is higher than ceramic CTE.

{{nl}→Heat = elongation

 \rightarrow Cooling = contraction

[1] W.D. Callister, Fundamentals of Materials Science and Engineering, 5th ed. New York, NY, USA: John Wiley & Sons, 2001, pp. 33

Common Crystal Structures

	FCC	всс	НСР
C.N.	12	8	12
total atoms/unit	4	2	6
APF	0.74	0.68	0.74
а	2R√2	4R/√3	td

Atomic Packing Factor

$$APF = \frac{\text{total sphere volume}}{\text{total unit cell volume}} = \frac{V_S}{V_C}$$

 $V_s = (4/3)(pi)(R^3)$

 $V c = a^3$

Theoretical Density of a Metallic Solid

n=# of atoms associated with each unit cell

A=atomic#

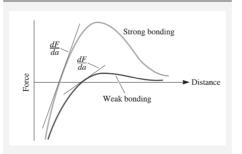
∀=volume of the unit cell

N = Avogadro's number (6.023 × 10²³ atoms/mol)

Direction From Miller Index

- 1. Look at the index values and if any are larger than one, take out a factor such that none of the integer values are greater than
- 2. For example, we have a Miller index of [2 1 1], we can take out a factor of 2 2* [1 1/2
- 3. Essentially we have created a new point to plot with coordinates of x = 1, y = 1/2 and
- 4. Set up your unit cube and it is fine to place the origin at the lower left hand corner as shown below.
- 5. Plot the new point (1, 1/2, 1/2) and connect the 'dots'.

Single crystal


Anisotropic

Polycrystal

Grain boundaries

Isotropic

Polymorphism

Stiffness of a material is related to the slope of the F vs atomic separation curve (r). The stiffness (dF/da) of the material is known as the Young's modulus, E.

Dimensions and Angles

Lattice parameters are the dimensions a,b and c of the unit cell.

Interaxial angles are α , β , and γ .

(top to bottom)BCC, FCC, & HCP

- 1. Draw the unit cube and right handed coordinate system & be sure that the plane does not pass thru the point you've selected to be the origin.
- 2. Take reciprocals
- 3. Plot the plane.
- 4. DO NOT CLEAR FRACTIONS.

Linear and Planar Density

Linear Density

Number of atoms per unit cell whose centers are aligned in a specific direction.

LD=

#atoms/unit length

Planar Density

Number of atoms per unit area that are centered on the area of the plane.

PD=

#atoms centered on plane/area of plane

By marrgotthewise (marrgotthewise)

Not published yet. Last updated 2nd February, 2020. Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!

http://crosswordcheats.com

cheatography.com/marrgotthewise/