Cheatography

AP Biology Exam 2020 Notes Cheat Sheet

by marisamcgovern via cheatography.com/122331/cs/22678/

Unit 1: Biochemistry

Carbohydrates

Polarity: Polar, Hydrophilic

Polymer: Polysaccharides

Monomer: Monosaccharides

Bond Type: Glycosidic Linkage strong stable covalent bond, always goes from a carbon bonded to an oxygen bonded to

a carbon

Formula: CnH2nOn

Functions: Energy Storage (Starch/Glycogen); Structural

(Cellulose/Chitin)

Lipids

Polarity: Non-Polar, Hydrophobic

Polymer: No Polymers or Monomers

Types: Triglycerides, Phospholipids (hydrophilic), Steroids

Bond Type: Ester Bond -

Formula: Contains many C's & H's and has uneven C:O ratio

Functions: Energy Storage (Starch/Glycogen); Structural (Cellulose/Chitin)

Proteins

Polarity: Non-Polar or Polar

Side Chains

Polymer: Polypeptide

Monomer: Amino Acid

Unit 1: Biochemistry (cont)

Bond Type: Peptide Bonds strong stable covalent bond, carbon in carboxyl group bonds to nitrogen in amine group, OH (carboxyl) & H (amine) forms

Formula: Includes Nitrogen, not Phosphorus!

Functions: So Many (ex. Enzymes, Structural Support)

Nucleic Acids

Polarity: Polar, Hydrophilic

Polymer: Nucleic Acids

Monomer: Nucleotide

Bond Type: Phosphodiester strong covalent bond, hydroxyl group (sugar) bonds to phosphate of next nucleotide

Formula: Includes Nitrogen and Phosphorus

Functions: Coding Information (DNA, RNA)

Properties of Water

Polarity - H₂O is "Polar" because it's uneven distribution of electrons gives it a charge()

Unit 1: Biochemistry (cont)

Cohesion - Attraction of molecules to other molecules of the same kind. H₂O has strong cohesive forces due to the H-Bonds they form with one another.

Adhesion - Attraction of molecules to other types of molecules. H₂O "sticks/adheres" to substances that are more positive or negative than itself

Surface Tension - Liquid's resistance to spreading out due to the cohesive nature of its molecules. H₂O = high surface tension when cohesive forces are stronger than adhesive ones

High Specific Heat - H₂O has the highest specific heat of any liquid due to its H-Bonds. specific heat - the amount of heat required totemp. of 1g of a substance by1C

H-Bonding - weak bonds from the electrostatic attraction (δ– portion to δ+ portion). Oxygen is δ– and Hydrogens are δ+ in water

Unit 1: Biochemistry (cont)

Phospholipids - not bound to each other; form structure due to water interactions; lipids ≠ bound → bilayer = fluid

Phospholipids: saturated tails take up less space, unsaturated (kinked) take up more space, long tails = thick membrane, short tails = thing membrane, cholesterol buffers fluidity

Enzymes and Regulation

Competitive Inhibitors - Compete with substrate for the active site; slow down the reaction

Noncompetitive Inhibitors - its attachment (not at active site), Δ active site shape \rightarrow stop/slow down reaction

Enzyme Structure - (Protein Structure) Synthesis Rxn-2 enzymes catalyze one reaction

Induced fit - Enzyme ↓ the activation energy of a rxn and makes it happen quicker

Enzyme Activity versus PH is a bell curve because their optimal pH for the reaction

Carbon Based Life

Carbon is stable and forms four covalent bonds

Fluid Mosaic Model

By marisamcgovern

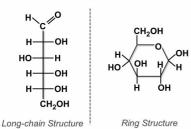
Not published yet. Last updated 5th May, 2020. Page 1 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

cheatography.com/marisamcgovern/

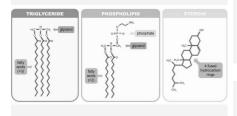
Cheatography

AP Biology Exam 2020 Notes Cheat Sheet

by marisamcgovern via cheatography.com/122331/cs/22678/

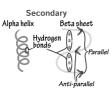

Unit 1: Biochemistry (cont)

Enzyme Activity versus [Substrate] is a linear relation until saturated and reaction rate platoes


Enzyme Activity versus Time is linear until the protein is denatured at a certain temperature

Carbohydrate Structure

Monosaccharide Structure


Lipid Structure

Protein Structure

CLASSES OF PROTEIN STRUCTURE

Amino Acid Structure

Unit 2: Cell Biology

Essential Cell Structure

- 1. Plasma Membrane -Separates internal environment from external (maintains homeostasis); shows cell came from a common ancestor
- 2. DNA Information Store/instruction to pass on to the next generation
- 3. Ribosomes Be able to build proteins from DNA instructions
- 4. Cytoplasm/Cytosol Conduct the chemical
 processes of life (water
 based gel allows for
 diffusion)

Prok. compared to Eukaryotes

Prokaryotes

Simple, Small, Cheap No Nucleus, Has Nucleoid Circular DNA No Internal Membrane Organelles do one job

Eukaryotes

Complex, Bigger, Expensive Has Nucleus Linear DNA Many Internal Membranes Organelles have many specific compartmentalized functions

Unit 2: Cell Biology (cont)

System - Another characteristic of eukaryotes that provides advantage to the cell due to different compartments (organelles) → fine tuned to be the best environment for their job

Idea - System of internal membranes nucleus (has code for making all the proteins) → continuous membrane with the ER (pro. factory) → smooth and rough (vesicles exit the right after and go to the golgi body) → the golgi body (place for modifying cellular products) buds off more vesicles that could fuse with the membrane and dump out the contents, could involve other organelles

Endosymbiotic Theory

Endosymbiosis - one organism living inside of another

Theory: a cell absorbed mitochondria/chloroplast & displayed the combined ability of both

Evidence

 Mitochondria & Chloroplasts multiply like ancient protists

Unit 2: Cell Biology (cont)

- 2. M & C have their own DNA (circular) + ribosomes similar to ancient bacteria
- 3. M & C have inner and outer membranes (inner is their own w/ lipids from ancient bacteria; outer is the cell that they acquired when engulfed)

Membrane Structure

A phospholipid bilayer with embedded proteins that is selectively permeable (ambiphilic: polar cannot penetrate; non polar passes right through ex. steroid hormone)

Passive Transport

 $\label{eq:def:Diffusion} \begin{tabular}{ll} $\operatorname{Diffusion} \cdot (\uparrow to \downarrow concentration)$ uses concentration $$ $$ gradients $$ \end{tabular}$

Factors Affecting Diffusion: Amount of gradient, Mass of molecules, Temp, Solvent Density, Solubility, Surface Area & Membrane Thickness, Distance Traveled

Osmosis - movement of H_2O to balance solute concentration (H_2O moves from high H_2O potential (less negative) to low H_2O potential (more negative) :: pure $H_2O = w.p.$)

Endomembrane System

By marisamcgovern

Not published yet. Last updated 5th May, 2020. Page 2 of 3. Sponsored by **Readable.com**Measure your website readability!
https://readable.com

cheatography.com/marisamcgovern/

Cheatography

AP Biology Exam 2020 Notes Cheat Sheet

by marisamcgovern via cheatography.com/122331/cs/22678/

Unit 2: Cell Biology (cont)

total w.p.= solute potential + physical pressure

Facilitated Diffusion - (\uparrow to \downarrow with help) type of diffusion guided by the presence of another integral membrane protein forming a pore or channel

Active Transport

Active Transport - uses free energy to move against concentration gradient

Primary Active Transport -ATP dependent

Secondary Active Transport - Primary dependent

Pumps - work against electromagnetic gradient

Bulk Transport

Endocytosis - entering the cell (loss of membrane)

Types - Phagocytosis (cell eating); Phinocytosis (cell drinking)

Photocytosis - uses caveolin & is receptor mediated

Exocytosis - exiting the cell (membrane gain)

Transcytosis - in one side, out the other

Eukaryotic Cell Structure/Function (Animal)

Eukaryotic Cell Structure/Function (Plant)

Prokaryote Cell Structure

Unit 3: Cell Respiration & PhotoSynthesis

Photosynthesis (Concept)

Light Energy → Chemical Compounds (Glucose)

2 Electron Transport Chains: 1 makes ATP, 1 makes NADPH

Cellular Respiration

Glucose → Usable Energy

1 Electron Transport Chain: makes ATP

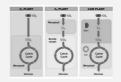
Compare

Depend on each other <-> Chemical Eqs

PhotoSynthesis (cont)

Both help ATP synthase: Both have H+ pumps (One pumps in, other out)

Alternative Photosynthesis Pathways


C3 - Concept (Normal Plant); Flaw (H₂O Loss); Where (Cell: Mezophill)(World: Everywhere)

C4 - Concept ("Air Lock": extra step before Calvin Cycle); Flaw (Costs Extra Energy); Where Cell (Mezophill & Calvin Cycle); Where World (↑Light; ↓ Nutrients)

CAM - Concept ("Night Closed": extra step before Calvin Cycle); Flaw (Costs Extra Energy); Where Cell (Mezophill & Calvin Cycle during day); Where World (dry, arid places)

Rubisco - Concept (Enzyme s CO₂ from inorganic → organic); Flaw (Not selective → causes Photorespiration); Where Cell (Calvin Cycle)

Alternative Photosynthesis

Glycolysis

Imput: 1 Glucose; 2 ATP; 2

NAD+

Output: 2 Pyruvate; 2 ATP

(net); 2 NADH Where: Cytoplasm

Explanation:

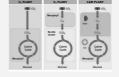
1. use ATP to trap & breakdown glucose

2. Continue with oxidative phosphorylation to make 2 pyruvate

Pyruvate Decarboxylation

Input: 2 Pyruvate; 2 NAD+

Output: 2 AcetylCoA; 2


NADH; 2 CO₂

Where: Mitochondria Matrix

Explination:

- 1. Remove Carboxyl Group
- 2. Oxidise Acetyl Group
- 3. Attach CoA

Pathways

By marisamcgovern

Not published yet. Last updated 5th May, 2020. Page 3 of 3.

Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/marisamcgovern/