

Cheatography

WIA2003 Prob&Stats (W1-W4) Cheat Sheet
by mariamaz via cheatography.com/171452/cs/35985/

Probability and its notations		Probability and its notations (cont)		Probability and its notations (cont)	
Deterministic processes	outcome can be predicted exactly in advance	Probability events	$P(A \cap B)$	Continuous random variable	range of X is uncountably infinite (that makes a physical measurement)
Random processes	outcome is not known exactly (can desc the probability distribution of possible outcomes)	A and B both occur			
Probability of event A	$0 <= P(A) <= 1$	Events A and B are mutually exclusive or disjoint cannot occur at the same time	$P(A B) = 0, P(A \cap B) = 0$		
Probability of whole sample space	$P(S) = 1, P(A) + P(B) + P(C) = 1$	Probability events	$P(A \cup B)$	Bayes' Theorem	Mutually exclusive/disjoint (if both events cannot occur together)
Event A will almost definitely not occur	$P(A) = 0$	A or B occur		Collectively exhaustive (if at least one of the events must occur)	$P(A \cup B) = P(A) + P(B)$
Only small chance that event A will occur	$P(A) = 0.1$	Conditional probability (event A occurs, given that event B has occurred)	$P(A B)$	Events A and B are independent	$P(A \cap B) = P(A) \times P(B)$
50-50 chance that event A will occur	$P(A) = 0.5$	Independent (event A does not change the probability of event B)	$P(A B) = P(A)$	Events A and B are not independent	$P(A \cap B) = P(A) \times P(B A)$
Strong chance that event A will occur	$P(A) = 0.9$	Complement (event that not occurring)	$P(A')$	Conditional probability of A given B	$P(A B) = P(A, B) / P(B)$
Event A will almost definitely occur	$P(A) = 1$	Rule of subtraction (event A will occur)	$P(A) = 1 - P(A')$	If A and B are statistically independent	$P(A B) = (P(A) \times P(B)) / P(B) = P(A)$
Probability successful outcome (S)	$P(S) = r/n ; r: \text{num of successful outcomes, } n: \text{total num of equally likely outcomes}$	Rule of multiplication (probability of the intersection of two events)	$P(A \cap B) = P(A) \times P(B A)$	if A and B are statistically dependent	$P(A B) \neq P(A)$
Permutations	Order is taken into account	Rule of addition (either event occurs, not mutually exclusive)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	Multiplication rule for conditional probabilities	$P(A \cap B) = P(B) \times P(A B) \text{ or } P(A \cap B) = P(A) \times P(B A)$
Combinations	Order is not important			Bayes Theorem	$P(A B) = (P(B A) \times P(A)) / P(B)$
Permutation with repetition	n^r				$P(S F) = (P(F S) \times P(S)) / (P(F S) \times P(S) + (P(F S') \times P(S')))$
Permutation without repetition	$n!/(n-r)!$	Random variable	determined by a chance event, outcome of a random experiment, measurable real-valued	Prior probability	originally obtained before any additional information is obtained
		Discrete random variable	range of X is finite or countably infinite (values X can take on, not the size of the values)	Posterior probability	has been revised by using additional information that is later obtained

Combin-
ation with
repetition

$(r+n-1)!/r!(n-1)!$

Combin-
ation
without
repetition

$n!/(n-r)!$

n: number of things to
choose from ; r: them are
chosen

By **mariamaz**

cheatography.com/mariamaz/

Not published yet.

Last updated 18th January, 2026.

Page 1 of 2.

Sponsored by **CrosswordCheats.com**

Learn to solve cryptic crosswords!

<http://crosswordcheats.com>