Cheatography

WIA2003 Prob&Stats (W1-W4) Cheat Sheet by mariamaz via cheatography.com/171452/cs/35985/

Probability and	d its notations	
Determ- inistic processes	outcome can be predicted exactly in advance	
Random processes	outcome is not known exactly (can desc the probability distribution of possible outcomes)	
Probability of event A	0<=P(A)<=1	
Probability of whole sample space	P(S)=1, P(A)+P(B)+P(C) = 1	
Event A will almost definitely not occur	P(A)=0	
Only small chance that event A will occur	P(A)=0.1	
50-50 chance that event A will occur	P(A)=0.5	
Strong chance that event A will occur	P(A)=0.9	
Event A will almost definitely occur	P(A)=1	
Probability successful outcome (S)	P(S) = r/n ; r: num of successful outcomes, n: total num of equally likely outcomes	
Permut- ations	Order is taken into account	
Combin- ations	Order is not important	
Permutation with repetition	n^r	
Permutation without repetition	n!/(n-r)!	

Probability and its notations (cont) Probability events P(A∩B) A and B both occur P{A|B}=0, P{A∩B}=0 Events A and B are mutually exclusive or disjoint cannot occur at the same time Probability events P(AUB) A or B occur Conditional P(A|B) probability (event A occurs, given that event B has occured) Independent $P{A|B} = P(A)$ (event A does not change the probability of event B) Complement P(A') (event that not occuring) Rule of subtraction P(A) = 1 - P(A')(event A will occur) Rule of multiplic- $P(A \cap B) = P(A) x$ ation (probability of P(B|A) the intersection of two events) Rule of addition $P(A\cup B) = P(A) + P(B)$ (either event - P(A∩B) occurs, not mutually exclusive) $P(A\cup B) = P(A) + P(B)$ - (P(A) x P(B|A)) Random variable determined by a chance event, outcome of a random experiment, measurable real-valued Discrete random range of X is finite ot variable countably infinite (values X can take on, not the size of the

values)

Probability and its notations (cont

Probability and its not				
Continuous range of	of X is uncountably			
	infinite (that makes a physical			
variable measurement)				
Bayes' Theorem				
Mutually exclus- ive/disjoint (if both events cannot occur together)	$P(A\cup B) = P(A)+P(B)$			
Collectively exhaustive (if at least one of the events must occur)	AuB = S			
Events A and B are independent	$P(A \cap B) = P(A) \times P(B)$			
Events A and B are not independent	P(A∩B) = P(A) x P(B A)			
Conditional probability of A given B	P(A B) = P(A,B) / P(B)			
If A and B are statistically indepe- ndent	P(A B) = (P(A) x P(B)) / P(B) = P(A)			
if A and B are statistically dependent	P(A B) != P(A)			
Multiplication rule for conditional probabilities	$P(A \cap B) = P(B) x$ $P(A B) \text{ or } P(A \cap B) =$ P(A) x P(B A)			
Bayes Theorem	P(A B) = (P(B A) x P(A)) / P(B)			
	P(S F) = (P(F S) x P(S)) / (P(F S) x P(S)) + (P(F S') x P(S'))			
Prior probability	originally obtained before any additional information is obtained			
Posterior probab- ility	has been revised by using additional information that is later obtained			

Combin- ation with repetition	(r+n-1)!/r!(n-1)!		
Combin- ation without repetition	n!/(n-r)!		
	n: number of things to choose from ; r: them are chosen		
C	By mariamaz cheatography.com/mariamaz/	Not published yet. Last updated 15th September, 2024.	Sponsored by Readable.com Measure your website readability!

https://readable.com

Page 1 of 2.