

WIA2003 Prob&Stats (W1-W4) Cheat Sheet by mariamaz via cheatography.com/171452/cs/35985/

Probability and its notations		
Determ- inistic processes	outcome can be predicted exactly in advance	
Random processes	outcome is not known exactly (can desc the probability distribution of possible outcomes)	
Probability of event A	0<=P(A)<=1	
Probability of whole sample space	P(S)=1, P(A)+P(B)+P(C) = 1	
Event A will almost definitely not occur	P(A)=0	
Only small chance that event A will occur	P(A)=0.1	
50-50 chance that event A will occur	P(A)=0.5	
Strong chance that event A will occur	P(A)=0.9	
Event A will almost definitely occur	P(A)=1	
Probability successful outcome (S)	P(S) = r/n; r: num of successful outcomes, n: total num of equally likely outcomes	
Permut- ations	Order is taken into account	
Combin- ations	Order is not important	
Permutation with repetition	n^r	
Permutation without repetition	n!/(n-r)!	

Probability and its no	otations (cont)
Probability events A and B both occur	P(A∩B)
Events A and B are mutually exclusive or disjoint cannot occur at the same time	P{A B}=0, P{A∩B}=0
Probability events A or B occur	P(AuB)
Conditional probability (event A occurs, given that event B has occured)	P(A B)
Independent (event A does not change the probability of event B)	$P\{A B\} = P(A)$
Complement (event that not occuring)	P(A')
Rule of subtraction (event A will occur)	P(A) = 1 - P(A')
Rule of multiplic- ation (probability of the intersection of two events)	$P(A \cap B) = P(A) \times P(B A)$
Rule of addition (either event occurs, not mutually exclusive)	$P(A \cup B) = P(A) + P(B)$ $- P(A \cap B)$
	$P(A \cup B) = P(A) + P(B)$ $- (P(A) \times P(B A))$
Random variable	determined by a chance event, outcome of a random experiment, measurable real-v- alued
Discrete random variable	range of X is finite ot countably infinite (values X can take on, not the size of the

values)

Continuous random variable	infinite	of X is uncountably (that makes a physical rement)
Bayes' Theore	em	
Mutually exclus- ive/disjoint (if both events cannot occur together)		$P(A \cup B) = P(A) + P(B)$
Collectively exhaustive (if least one of the events must of	ne	AuB = S
Events A and independent	B are	$P(A \cap B) = P(A) \times P(B)$
Events A and not independe		$P(A \cap B) = P(A) x$ P(B A)
Conditional probability of given B	A	P(A B) = P(A,B) / $P(B)$
If A and B are statistically in ndent		P(A B) = (P(A) x P(B)) / P(B) = P(A)
if A and B are statistically dependent	•	P(A B) != P(A)
Multiplication for conditional probabilities		$P(A \cap B) = P(B) \times$ $P(A B) \text{ or } P(A \cap B) =$ $P(A) \times P(B A)$
Bayes Theore	em	$P(A B) = (P(B A) \times P(A)) / P(B)$
		$P(S F) = (P(F S) \times P(S)) / (P(F S) \times P(S)) + (P(F S') \times P(S'))$
Prior probabil	ity	originally obtained before any additional information is obtained
Posterior probility	oab-	has been revised by using additional information that is later obtained

Probability and its notations (cont)

Combin- ation with repetition	(r+n-1)!/r!(n-1)!
Combination without repetition	n!/(n-r)!
	n: number of things to choose from ; r: them are chosen

By mariamaz cheatography.com/mariamaz/

Not published yet. Last updated 21st March, 2025. Page 1 of 2. Sponsored by **Readable.com**Measure your website readability!
https://readable.com