Probability and its notations

Determ-	outcome can be predicted
inistic	exactly in advance
processes	

Random processes

Probability
outcome is not known exactly (can desc the probability distribution of possible outcomes)
of event A
Probability $\quad P(S)=1, P(A)+P(B)+P(C)=1$ of whole
sample space

Event A will $\quad P(A)=0$
almost
definitely
not occur
Only small chance that event A will occur

50-50 chance that event A will occur	$P(A)=0.5$
Strong chance that event A will occur	$P(A)=0.9$
Event A will almost definitely occur	$P(A)=1$

Probability
successful
outcome (S)

Permutations

Combin- Order is not important
ations
Permutation $n^{\wedge} r$
with
repetition
Permutation $n!/(n-r)$!
without
repetition

Probability and its notations (cont)

Probability events $P(A \cap B)$
A and B both occur
Events A and $B \quad P\{A \mid B\}=0, P\{A \cap B\}=0$
are mutually
exclusive or
disjoint cannot
occur at the same
time
Probability events $\quad P(A \cup B)$
A or B occur
Conditional $\quad \mathrm{P}(\mathrm{A} \mid \mathrm{B})$
probability (event
A occurs, given
that event B has
occured)
Independent
$P\{A \mid B\}=P(A)$
(event A does not
change the
probability of event
B)

Complement
(event that not
occuring)
Rule of subtraction $\quad P(A)=1-P\left(A^{\prime}\right)$
(event A will occur)
Rule of multiplic-
$P(A \cap B)=P(A) x$
ation (probability of
$P(B \mid A)$
the intersection of
two events)
Rule of addition
(either event
occurs, not
mutually exclusive)
$P(A \cup B)=P(A)+P(B)$

- ($\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B} \mid \mathrm{A}))$

Random variable	determined by a chance event, outcome of a random experiment, measurable real-v- alued
Discrete random	range of X is finite ot countably infinite (values X can take on, not the size of the values)

Probability and its notations (cont)	
	of X is uncountably (that makes a physical rement)
Bayes' Theorem	
Mutually exclus- $\quad \mathrm{P}(\mathrm{A} u \mathrm{~B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$ive/disjoint (if bothevents cannotoccur together)	
Collectively \quad AUB $=S$exhaustive (if atleast one of theevents must occur)	
Events A and B are $P(A \cap B)=P(A) \times P(B)$independent	
Events A and B are not independent	$\begin{aligned} & P(A \cap B)=P(A) x \\ & P(B \mid A) \end{aligned}$
Conditional $P(A \mid B)=P(A, B) /$ probability of A $P(B)$ given B	
If A and B are $P(A \mid B)=(P(A) x$ statistically indepe-- $P(B)) / P(B)=P(A)$ ndent	
if A and B are $\quad P(A \mid B)!=P(A)$statisticallydependent	
Multiplication rule for conditional probabilities	$\begin{aligned} & P(A \cap B)=P(B) x \\ & P(A \mid B) \text { or } P(A \cap B)= \\ & P(A) \times P(B \mid A) \end{aligned}$
Bayes Theorem	$\begin{aligned} & \mathrm{P}(\mathrm{~A} \mid \mathrm{B})=(\mathrm{P}(\mathrm{~B} \mid \mathrm{A}) \mathrm{x} \\ & \mathrm{P}(\mathrm{~A})) / \mathrm{P}(\mathrm{~B}) \end{aligned}$
	$\begin{aligned} & \mathrm{P}(\mathrm{~S} \mid \mathrm{F})=(\mathrm{P}(\mathrm{~F} \mid \mathrm{S}) \mathrm{x} \\ & \mathrm{P}(\mathrm{~S})) /(\mathrm{P}(\mathrm{~F} \mid \mathrm{S}) \mathrm{x} \\ & \mathrm{P}(\mathrm{~S}))+\left(\mathrm{P}\left(\mathrm{~F} \mid \mathrm{S}^{\prime}\right) \mathrm{x}\right. \\ & \left.\mathrm{P}\left(\mathrm{~S}^{\prime}\right)\right) \end{aligned}$
Prior probability	originally obtained before any additional information is obtained
Posterior probability	has been revised by using additional information that is later obtained

Combin-$(r+n-1)!/ r!(n-1)!$
ation with
repetition
Combin- $n!/(n-r)!$
ation
without
repetition
n : number of things to
choose from ; r: them are
chosen

By mariamaz

cheatography.com/mariamaz/

Not published yet.
Last updated 29th April, 2024.
Page 1 of 2 .

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!
http://crosswordcheats.com

