
Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

A Pragmatic PhilosophyA Pragmatic Philosophy

Care About Your Craft Why spend your life developing software unless you care about doing it well?

Think! About Your Work Turn off the autopilot and take control. Constantly critique and appraise your work.

Provide Options, Don't Make Lame Excuses Instead of excuses, provide options. Don't say it can't be done; explain what can be done to
salvage the situation.

Software EntropySoftware Entropy

Don't Live with Broken Windows Don't mess up the carpet when fixing the broken window.

One broken window, left unrepaired for any substantial length of time, instills in the inhabitants of the building a sense of abandonment—a
sense that the powers that be don't care about the building. So another window gets broken. People start littering. Graffiti appears. Serious
structural damage begins. In a relatively short space of time, the building becomes damaged beyond the owner's desire to fix it, and the sense of
abandonment becomes reality.

Stone Soup and Boiled FrogsStone Soup and Boiled Frogs

Be a Catalyst for Change Most software disasters start out too small to notice, and most project overruns happen a day at a time. If you take a
frog and drop it into boiling water, it will jump straight back out again. However, if you place the frog in a pan of cold
water, then gradually heat it, the frog won't notice the slow increase in temperature and will stay put until cooked.
Don't be like the frog. Keep an eye on the big picture.

It's time to bring out the stones. Work out what you can reasonably ask for. Develop it well. Once you've got it, show people, and let them
marvel. Then say "of course, it would be better if we added…."

People find it easier to join an ongoing success.

Good enough soupGood enough soup

Make Quality a Requirements Issue Great software today is often preferable to perfect software tomorrow. Know when to stop.

The scope and quality of the system you produce should be specified as part of that system's requirements.

Your Knowledge PortfolioYour Knowledge Portfolio

Invest Regularly in Your Knowledge Portfolio Learn at least one new language every year. Read a technical book each quarter. Read nontec‐
hnical books, too. Take classes. Participate in local user groups. Experiment with different
environments. Stay current. Get wired.

An investment in knowledge always pays the best interest.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 1 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Your Knowledge Portfolio (cont)Your Knowledge Portfolio (cont)

Critically Analyze What You Read and
Hear

You need to ensure that the knowledge in your portfolio is accurate and unswayed by either vendor or
media hype.

Building Your Portfolio - Serious investors invest regularly, as a habit
- Diversification is the key to long-term success
- Smart investors balance their portfolios between conservative and high-risk,high-reward investments
- Investors try to buy low and sell high for maximum return
- Portfolios should be reviewed and rebalanced periodically

Communicate!Communicate!

Know your audience (WISDOM) What do they WantWant?
What is their InterestInterest?
How SophisticatedSophisticated are they?
How much DetailDetail do they want?
Whom do you want to OwnOwn the information?
How can you MotivateMotivate them to listen?

Choose your moment Understanding when your audience needs to hear your information.

Choose a style Just the facts, large bound reports, a simple memo.

Make it look good Add good-looking vehicle to your important ideas and engage your audience.

Involve your audience Get their feedback, and pick their brains.

Be a listener Encourage people to talk by asking questions.

Get back to people Keep people informed afterwards.

Know what you want to say. Plan what you want to say. Write an outline.
It's Both What You Say and the Way You Say It.It's Both What You Say and the Way You Say It.

A Pragmatic ApproachA Pragmatic Approach

Tips and tricks that apply at all levels of software development, ideas that are almost axiomatic.

The Evils of DuplicationThe Evils of Duplication

DRY—Don't Repeat Yourself The problem arises when you need to change a representation of things that are across all the code base. Every
piece of knowledge must have a single, unambiguous, authoritative representation within a system.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 2 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

The Evils of Duplication (cont)The Evils of Duplication (cont)

Make it easy to reuse

Imposed duplicationImposed duplication Developers feel they have no choice—the environment seems to require duplication.
Inadvertent duplicationInadvertent duplication Developers don't realize that they are duplicating information.
Impatient duplicationImpatient duplication Developers get lazy and duplicate because it seems easier.
Interdeveloper duplicationInterdeveloper duplication Multiple people on a team (or on different teams) duplicate a piece of information.

OrthogonalityOrthogonality

Eliminate Effects Between Unrelated Things Two or more things are orthogonal if changes in one do not affect any of the others. Also
called cohesion. Write "shy" code.

Project Teams Functionality is divided.

Design Easier to design a complete project through its components.

Toolkits and Libraries Choose wisely to keep orthogonality.

Testing Orthogonal systems are easier to test.

Documentation Also gain quality

Gain ProductivityGain Productivity Changes are localized
Promotes reuse
M x N orthogonal components do more than M x N non orthogonal components

Reduce RiskReduce Risk Diseased sections or code are isolated
Are better tested
Not tied to a product or platform

Coding: In order to keep orthogonality whenCoding: In order to keep orthogonality when
adding code do:adding code do:

Keep your code decoupled
Avoid global data
Avoid similar functions

ReversibilityReversibility

There are no final decisions.

Tracer BulletsTracer Bullets

Use Tracer Bullets to Find the
Target

Advantages:
Users get to see something working early
Developers build a structure to work in
You have an integration platform
You have something to demonstrate
You have a better feel for progress

Tracer Bullets Don't Always Hit
Their Target

Tracer bullets show what you're hitting. This may not always be the target. You then adjust your aim until
they're on target. That's the point.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 3 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Tracer Bullets (cont)Tracer Bullets (cont)

Tracer Code versus Prototyping With a prototype, you're aiming to explore specific aspects of the final system. Tracer code is used to
know how the application as a whole hangs together.

Prototyping generates disposable code Tracer code is lean but complete, and forms part of the skeleton of the final system.

In new projects your users requirements may be vague. Use of new algorithms, techniques, languages, or libraries unknowns will come. And
environment will change over time before you are done.
We're looking for something that gets us from a requirement to some aspect of the final system quickly, visibly, and repeatably.

Prototypes and Post-it NotesPrototypes and Post-it Notes

Things to Prototype Architecture
New functionality in an existing system
Structure or contents of external data
Third-party tools or components
Performance issues
User interface design

What details can you ignore? Correctness
Completeness
Robustness
Style

Prototyping Architecture: Are the responsibilities of the major components well defined and appropriate?
Are the collaborations between major components well defined?
Is coupling minimized?
Can you identify potential sources of duplication?
Are interface definitions and constraints acceptable?
Does every module have an access path to the data it needs during execution?

We build software prototypes to analyse and expose risk, and to offer chances for correction at a greatly reduced cost.

Prototype anything that carries risk. Anything that hasn’t been tried before, or that is absolutely critical to the final system. Anything unproven,
experimental, or doubtful. Anything you aren’t comfortable with.

Prototype to learn, and never deploy the prototype.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 4 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Domain LanguagesDomain Languages

Program close to the problem domain.

EstimatingEstimating

Estimate to Avoid Surprises First:First: Do they need high accuracy, or are they looking for a ballpark figure?
Second:Second: Scale time estimates properly

Where Do Estimates Come From? Understand What's Being Asked
Build a Model of the System
Break the Model into Components
Give Each Parameter a Value
Calculate the Answers
Keep Track of Your Estimating Prowess

Iterate the Schedule with the Code Guess estimation
Check requirements
Analyze risk
Design, implement, integrate
Validate with the users
Repeat

What to Say When Asked for an Estimate "I’ll get back to you.”

Quote estimate in

1-15 days - days
3-8 weeks - weeks
8-30 weeks - months
30+ weeks - think hard before giving an estimate

The Basic ToolsThe Basic Tools

Every craftsman starts his or her journey with a basic set of good quality tools.

The Power of Plain TextThe Power of Plain Text

Drawbacks More space
Computationally more expensive

The Power of Text Insurance against obsolescence
Leverage
Easier testing

Keep knowledge in plain text.

Shell GamesShell Games

Use the power of command shells.

Can't you do everything equally well by pointing and clicking in a GUI? NoNo. A benefit of GUIs is WYSIWYG - what you see is what you get. The
disadvantage is WYSIAYG - what you see is all you get.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 5 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Power EditingPower Editing

Editor Features Configurable
Extensible
Programmable
Syntax highlighting
Auto-completion
Auto-indentation
Initial code or document boilerplate
Tie-in to help systems
IDE-like features (compile, debug, and so on)

Use a single editor well.

Source Code ControlSource Code Control

Always use source code control!

DebuggingDebugging

A Debugging Mindset Don't waste a single neuron on the train of thought that begins "but that can't happen" because quite clearly it can,
and has. Try to discover the root cause of a problem, not just this particular appearance of it.

Where to Start Before you start, check the warnings or better remove all of them. You first need to be accurate in your observations
and data.

Bug Reproduction The best way to start fixing a bug is to make it reproducible. The second best way is to make it reproducible with a
single command.

Visualize Your Data Use the tools that the debugger offers you. Pen and paper can also help.

Tracing Know what happens before and after.

Rubber Ducking Explain the bug to someone else.

Process of Elimination "select" Isn't Broken

The Element of Surprise Don’t Assume It—Prove It

Fix the problem, not the blame. And don't panic.

Debugging ChecklistDebugging Checklist
Is the problem being reported a direct result of the underlying bug, or merely a symptom?
Is the bug really in the compiler? Is it in the OS? Or is it in your code?
If you explained this problem in detail to a coworker, what would you say?
If the suspect code passes its unit tests, are the tests complete enough? What happens if you run the unit test with this data?
Do the conditions that caused this bug exist anywhere else in the system?

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 6 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Text ManipulationText Manipulation

Learn a text manipulation language.

Code GeneratorsCode Generators

Code Generators Needn't Be Complex Keep the input format simple, and the code generator becomes simple.

Code Generators Needn't Generate
Code

You can use code generators to write just about any output: HTML, XML, plain text - any text that
might be an input somewhere else in your project.

Write Code That Writes CodeWrite Code That Writes Code

Passive code generatorsPassive code generators are run once to produce a result. They are basically parameterized templates, generating a given output from a set of
inputs.

Active code generatorsActive code generators are used each time their results are required. Take a single representation of some piece of knowledge and convert it
into all the forms your application needs.

A Pragmatic ParanoiaA Pragmatic Paranoia

You can't write Perfect Software. No one in the brief history of computing has ever written a piece of perfect software. Pragmatic Programmers
don't trust themselves, either.

Design by ContractDesign by Contract

Design with Contracts Write "lazy" code: be strict in what you will accept before you begin, and promise as little as possible in return.

Implementing DBC Simply enumerating at design time:

what the input domain range is
what the boundary conditions are
what the routine promises to deliver (and what it doesn't)

Assertions You can use assertions to apply DBC in some range. (Assertions are not propagated in subclasses)

Invariants Loop Invariants: Is true before and during the loop, therefore also when the loop finishes
Semantic Invariants: ie the error should be on the side of not processing a transaction rather than processing a
duplicate transaction.

DBC enforces crashing early.

A correct program is one that does no more and no less than it claims to do. Use:

Preconditions
Postconditions
Invariants

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 7 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Dead Programs Tell No LiesDead Programs Tell No Lies

Crash Early A dead program normally does a lot less damage than a crippled one. When your code discovers that something that was
supposed to be impossible just happened, your program is no longer viable.

All errors give you information. Pragmatic Programmers tell themselves that if there is an error, something very, very bad has happened.

Assertive ProgrammingAssertive Programming

If It can't happen, use Assertions to ensure that It won't.

Assertions are also useful checks on an algorithm's operation.

Don't use assertions in place of real error handling.

Leave assertions turned on, unless you have critical performance issues.

When to Use ExceptionsWhen to Use Exceptions

Use exceptions for exceptional problems.

What Is Exceptional?What Is Exceptional? The program must run if all the exception handlers are removed. If your code tries to open a file for reading and that file
does not exist, should an exception be raised?

Yes: If the file should have been there
No: If you have no idea whether the file should exist or not

How to Balance ResourcesHow to Balance Resources

Finish What You Start When managing resources: memory, transactions, threads, flies, timers—all kinds of things with limited availability,
we have to close, finish, delete, deallocate them when we are done.

Nest Allocations Deallocate resources in the opposite order to that in which you allocate them
When allocating the same set of resources in different places in your code, always allocate them in the same order
(prevent deadlocks)

Objects and Exceptions Use finally to free resources.

Bend, or BreakBend, or Break

In order to keep up with today’s near-frantic pace of change, we need to make every effort to write code that’s as loose - as flexible - as
possible.

Decoupling and the Law of DemeterDecoupling and the Law of Demeter

Minimize Coupling Be careful about how many other modules you interact with and how you came to interact with them.

Traversing relationships between objects directly can quickly lead to a combinatorial explosion.

Symptoms:
1.Large projects where the command to link a unit test is longer than the test program itself
2."Simple" changes to one module that propagate through unrelated modules in the system
3.Developers who are afraid to change code because they aren't sure what might be affected

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 8 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Decoupling and the Law of Demeter (cont)Decoupling and the Law of Demeter (cont)

The Law of Demeter for Functions Any method of an object should call only methods belonging to:
- itself
- any parameters that were passed in to the method
- any objects it created
- any directly held component objects

Does It Really Make a Differ‐Does It Really Make a Differ‐
ence?ence?

Using The Law of Demeter will make your code more adaptable and robust, but at a cost: you will be writing
a large number of wrapper methods that simply forward the request on to a delegate. imposing both a
runtime cost and a space overhead.

Balance the pros and cons for your particular application.

MetaprogrammingMetaprogramming

Put Abstractions in Code, Details in Metadata We want to configure and drive the application via metadata as much as possible. Program for
the general case, and put the specifics somewhere else —outside the compiled code base.

When to Configure A flexible approach is to write programs that can reload their configuration while they're running.

- long-running server process: provide some way to reread and apply metadata while the
program is running.
- small client GUI application: if restarts quickly no problem.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 9 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Metaprogramming (cont)Metaprogramming (cont)

Benefits - It forces you to decouple your design, which results in a more flexible and adaptable program.
- It forces you to create a more robust, abstract design by deferring details—deferring them all the way out of the program.
- You can customize the application without recompiling it.
- Metadata can be expressed in a manner that's much closer to the problem domain than a general-purpose programming language
might be.
- You may even be able to implement several different projects using the same application engine, but with different metadata.

Configure, don't integrate.

Temporal CouplingTemporal Coupling

Two aspects of time:

- Concurrency: things happening at the same time
- Ordering: the relative positions of things in time

We need to allow for concurrency and to think about decoupling any time or order dependencies. Reduce any time-based dependencies

WorkflowWorkflow

Analyze Workflow to Improve Concurrency Use activity diagrams to maximize parallelism by identifying activities that could be performed in
parallel, but aren't.

ArchitectureArchitecture

Design using services.

Balance load among multiple consumer processes: the hungry consumer model.

In a hungry consumer model, you replace the central scheduler with a number of independent consumer tasks and a centralized work queue.
Each consumer task grabs a piece from the work queue and goes on about the business of processing it. As each task finishes its work, it goes
back to the queue for some more. This way, if any particular task gets bogged down, the others can pick up the slack, and each individual
component can proceed at its own pace. Each component is temporally decoupled from the others.

Design for ConcurrencyDesign for Concurrency

Programming with threads imposes some design constraints—and that's a good thing.

- Global or static variables must be protected from concurrent access
- Check if you need a global variable in the first place.
- Consistent state information, regardless of the order of calls
- Objects must always be in a valid state when called, and they can be called at the most awkward times. Use class invariants, discussed in
Design by Contract.

Thinking about concurrency and time-ordered dependencies can lead you to design cleaner interfaces as well.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 10 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

DeploymentDeployment

You can be flexible as to how the application is deployed: standalone, client-server, or n-tier.

If we design to allow for concurrency, we can more easily meet scalability or performance requirements when the time comes—and if the time
never comes, we still have the benefit of a cleaner design.

It's Just a ViewIt's Just a View

Publish/Subscribe Objects should be able to register to receive only the events they need, and should never be sent events they don't
need.

Use this publish/subscribe mechanism to implement a very important design concept: the separation of a model from
views of the model.

Model-View-Controller Separates the model from both the GUI that represents it and the controls that manage the view.

Advantage:

- Support multiple views of the same data model.
- Use common viewers on many different data models.
- Support multiple controllers to provide nontraditional input mechanisms.

Beyond GUIs The controller is more of a coordination mechanism, and doesn't have to be related to any sort of input device.

ModelModel The abstract data model representing the target object. The model has no direct knowledge of any views or
controllers.
ViewView A way to interpret the model. It subscribes to changes in the model and logical events from the controller.
ControllerController A way to control the view and provide the model with new data. It publishes events to both the model and the
view.

BlackboardsBlackboards

A blackboard system lets us decouple our objects from each other completely, providing a forum where knowledge consumers and producers
can exchange data anonymously and asynchronously.

With Blackboard systems, you can store active objects - not just data - on the blackboard, and retrieve them by partial matching of fields (via
templates and wildcards) or by subtypes.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 11 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Blackboards (cont)Blackboards (cont)

Functions that a Blackboard system should have - readread Search for and retrieve data from the space.
- writewrite Put an item into the space.
- taketake Similar to read, but removes the item from the space as well.
- notifynotify Set up a notification to occur whenever an object is written that matches the template.

Organize your Blackboard by partitioning it when working on large cases.

Use blackboards to coordinate workflow

While you are codingWhile you are coding

We should avoid programming by coincidence—relying on luck and accidental successes— in favor of programming deliberately. Don't programDon't program
by coincidence.by coincidence.

Program by CoincidenceProgram by Coincidence

Program Deliberately Always be aware of what you are doing.
Don't code blindfolded.
Proceed from a plan.
Rely only on reliable things.
Document your assumptions.
Don't just test your code, but test your assumptions as well. Don't guess
Prioritize your effort.
Don't be a slave to history. Don't let existing code dictate future code.

Algorithm SpeedAlgorithm Speed

Pragmatic Programmers estimate the resources that algorithms use—time, processor, memory, and so on.

Use Big O NotationUse Big O Notation O(1)O(1): Constant (access element in array, simple statements)
O(lg(n))O(lg(n)): Logarithmic (binary search) lg(n) = lg2(n)
O(n)O(n): Linear: Sequential search
O(n lg(n))O(n lg(n)): Worse than linear but not much worse(average runtime of quickshort, headsort)
O(n²)O(n²): Square law (selection and insertion sorts)
O(n³)O(n³): Cubic (multiplication of 2 n x n matrices)
O(Cⁿ)O(Cⁿ): Exponential (travelling salesman problem, set partitioning)

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 12 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Algorithm Speed (cont)Algorithm Speed (cont)

Common Sense EstimationCommon Sense Estimation - Simple loops: O(n)
- Nested loops: O(n²)
- Binary chop: O(lg(n))
- Divide and conquer: O(n lg(n)). Algorithms that partition their input, work on the two halves independently, and
then combine the result.
- Combinatoric: O(Cⁿ)

Estimate the Order of Your Algorithms

Test Your Estimates

RefactoringRefactoring

When Should You Refactor? - Duplication. You've discovered a violation of the DRY principle.
- Nonorthogonal design. You've discovered some code or design that could be made more orthogonal.
- Outdated knowledge. Things change, requirements drift, and your knowledge of the problem increases. Code
needs to keep up.
- Performance. You need to move functionality from one area of the system to another to improve performance.

Refactor Early, Refactor Often

How Do You Refactor? - Don't try to refactor and add functionality at the same time.
- Make sure you have good tests before you begin refactoring.
- Take short, deliberate steps.

Code needs to evolve; it's not a static thing.

Code That's Easy to TestCode That's Easy to Test

Unit Testing Testing done on each module, in isolation, to verify its behavior. A software unit test is code that exercises a module.

Testing Against Contract This will tell us two things:

1.Whether the code meet the contract
2.Whether the contract means what we think it means.

Design to Test There's no better way to fix errors than by avoiding them in the first place. Build the tests before you implement the
code.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 13 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Code That's Easy to Test (cont)Code That's Easy to Test (cont)

Writing Unit Tests By making the test code readily accessible, you are providing developers who may use your code with two invaluable
resources:

1.Examples of how to use all the functionality of your module
2.A means to build regression tests to validate any future changes to the code

You must run them, and run them often.

Using Test
Harnesses

Test harnesses should include the following capabilities:

- A standard way to specify setup and cleanup
- A method for selecting individual tests or all available tests
- A means of analyzing output for expected (or unexpected) results
- A standardized form of failure reporting

Build a Test Window - Log files.
- Hot-key sequence.
- Built-in Web server.

A Culture of Testing Test your Software, or your users will.

Evil WizardsEvil Wizards

Don't Use Wizard Code You Don't Understand If you do use a wizard, and you don't understand all the code that it produces, you won't be in
control of your own application.

Before the projectBefore the project

With these critical issues sorted out before the project gets under way, you can be better positioned to avoid “analysis paralysis” and actually
begin your successful project.

The Requirements PitThe Requirements Pit

Don't Gather Requirements—Dig for Them Policy may end up as metadata in the application. Gathering requirements in this way naturally
leads you to a system that is well factored to support metadata.

Work with a User to Think Like a User

Documenting Requirements Use "use cases"

Overspecifying Requirements are not architecture. Requirements are not design, nor are they the user interface.
Requirements are need.

Seeing Further Abstractions live longer than details.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 14 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

The Requirements Pit (cont)The Requirements Pit (cont)

Just One More
Wafer-Thin Mint…

What can we do to prevent requirements from creeping up on us? The key to managing growth of requirements is to
point out each new feature's impact on the schedule to the project sponsors.

Use a Project
Glossary

It's very hard to succeed on a project where the users and developers refer to the same thing by different names or, even
worse, refer to different things by the same name.

Get the Word Out Publishing project documents to internal Web sites for easy access by all participants.

Perfection is achieved, not when there is nothing left to add, but when there is nothing left to take away. . . . - Antoine de St. Exupery, Wind,
Sand, and Stars, 1939

Solving Impossible PuzzlesSolving Impossible Puzzles

Don't Think Outside the Box—
Find the Box

The key to solving puzzles is both to recognize the constraints placed on you and to recognize the degrees of
freedom you do have, for in those you'll find your solution.

There Must Be an Easier Way! If you can not find the solution, step back and ask yourself these questions:

- Is there an easier way?
- Are you trying to solve the right problem, or have you been distracted by a peripheral technicality?
- Why is this thing a problem?
- What is it that's making it so hard to solve?
- Does it have to be done this way?
- Does it have to be done at all?

Not Until You're ReadyNot Until You're Ready

Listen to Nagging Doubts—Start
When You're Ready

If you sit down to start typing and there's some nagging doubt in your mind, heed it.

Good Judgment or Procrastination? Start prototyping. Choose an area that you feel will be difficult and begin producing some kind of proof of
concept, and be sure to remember why you're doing it and that it is a prototype.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 15 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

The Specification TrapThe Specification Trap

Some things are better done than described.

Writing a specification is quite a responsibility. You should know when to stop:

- Specification will never capture every detail of a system or its requirement.
- The expressive power of language itself might not be enough to describe a specification
- A design that leaves the coder no room for interpretation robs the programming effort of any skill and art.

Circles and ArrowsCircles and Arrows

Don't Be a Slave to Formal Method Formal methods have some serious shortcomings:

- Diagrams are meaningless to the end users, show the user a prototype and let them play with it.
- Formal methods seem to encourage specialization. It may not be possible to have an in-depth grasp of
every aspect of a system.
- We like to write adaptable, dynamic systems, using metadata to allow us to change the character of
applications at runtime, but most current formal methods don't allow it.

Do Methods Pay Off? Never underestimate the cost of adopting new tools and methods.

Should We Use Formal Methods? Absolutely, but remember that is just one more tool in the toolbox.

Expensive tools do not produce better designs.

Pragmatic ProjectsPragmatic Projects

Pragmatic TeamsPragmatic Teams

No Broken Windows Quality is a team issue. Teams as a whole should not tolerate broken windows—those small imperfections that no one
fixes. Quality can come only from the individual contributions of all team members.

Boiled Frogs People assume that someone else is handling an issue, or that the team leader must have OK'd a change that your user
is requesting. Fight this.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 16 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Pragmatic Teams (cont)Pragmatic Teams (cont)

Communicate The team as an entity needs to communicate clearly with the rest of the world. People look forward to meetings with them,
because they know that they'll see a well-prepared performance that makes everyone feel good. There is a simple
marketing trick that helps teams communicate as one: generate a brand.

Don't Repeat
Yourself

Appoint a member as the project librarian.

Orthogonality It is a mistake to think that the activities of a project—analysis, design, coding, and testing—can happen in isolation. They
can't. These are different views of the same problem, and artificially separating them can cause a boatload of trouble.

Organize Around
Functionality, Not
Job Functions

Split teams by functionally. Database, UI, API
Let the teams organize themselves internally
Each team has responsibilities to others in the project (defined by their agreed-upon commitments)
We're looking for cohesive, largely self-contained teams of people

Organize our resources using the same techniques we use to organize code, using techniques such as contracts (Design
by Contract), decoupling (Decoupling and the Law of Demeter), and orthogonality (Orthogonality), and we help isolate the
team as a whole from the effects of change.

Automation Automation is an essential component of every project team.

Know when to stop adding paint.

Ubiquitous AutomationUbiquitous Automation

All on Automatic Don't Use Manual Procedures.Don't Use Manual Procedures. Using cron, we can schedule backups, nightly build, Web site... unattended, automatic‐
ally.

Compiling the
Project

We want to check out, build, test, and ship with a single command:

- Generating Code
- Regression Tests

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 17 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Ubiquitous Automation (cont)Ubiquitous Automation (cont)

Build Automation A build is a procedure that takes an empty directory (and a known compilation environment) and builds the project
from scratch, producing whatever you hope to produce as a final deliverable.

1. Check out the source code from the repository
2. Build the project from scratch (marked with the version number).
3. Create a distributable image
4. Run specified tests

When you don't run tests regularly, you may discover that the application broke due to a code change made three
months ago. Good luck finding that one.

Nightly buildNightly build run it every night.

Final buildsFinal builds (to ship as products), may have different requirements from the regular nightly build.

Automatic Administrivia Our goal is to maintain an automatic, unattended, content-driven workflow.

Web Site Generation results of the build itself, regression tests, performance statistics, coding metrics...
Approval Procedures get marks / Status: needs_review /, send email...

The Cobbler's Children Let the computer do the repetitious, the mundane—it will do a better job of it than we would. We've got more important
and more difficult things to do.

Ruthless testingRuthless testing

Test Early. Test Often. Test Automatically. Tests that run with every build are the most effective. The earlier a bug is found, the cheaper it is to
remedy. "Code a little, test a little".

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 18 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Ruthless testing (cont)Ruthless testing (cont)

What to Test - Unit testing: code that exercises a module.
- Integration testing: the major subsystems that make up the project work and play well with each other.
- Validation and verification: test if you are delivering what users needs.
- Resource exhaustion, errors, and recovery: discover how it will behave under real-world conditions. (Memory, Disk, CPU,
Screen...)
- Performance testing: meets the performance requirements under real-world conditions.
- Usability testing: performed with real users, under real environmental conditions.

How to Test - Regression testing: compares the output of the current test with previous (or known) values. Most of the tests are regression
tests.
- Test data: there are only two kinds of data: real-world data and synthetic data.
- Exercising GUI systems: requires specialised testing tools, based on a simple event capture/playback model.
- Testing the tests: After you have written a test to detect a particular bug, cause the bug deliberately and make sure the test
complains. Use Saboteurs to Test Your Testing
- Testing thoroughly. Test State Coverage, Not Code Coverage

When to
Test

As soon as any production code exists, it needs to be tested. Most testing should be done automatically.

Tightening
the Net

If a bug slips through the net of existing tests, you need to add a new test to trap it next time. Find Bugs Once.

Coding ain't done 'til all the tests run.

Pragmatic Programmers are driven to find our bugs now, so we don't have to endure the shame of others finding our bugs later.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 19 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

It's All WritingIt's All Writing

Comments in Code In general, comments should discuss why something is done, its purpose and its goal. Remember that you (and
others after you) will be reading the code many hundreds of times, but only writing it a few times. Even worse than
meaningless names are misleading names. One of the most important pieces of information that should appear in the
source file is the author's name—not necessarily who edited the file last, but the owner.

Executable Documents Create documents that create schemas. The only way to change the schema is to change the document.

Technical Writers We want the writers to embrace the same basic principles that a Pragmatic Programmer does—especially honoring
the DRY principle, orthogonality, the model-view concept, and the use of automation and scripting.

Print It or Weave It Paper documentation can become out of date as soon as it's printed. Publish it online, on the Web. Remember to put
a date stamp or version number on each Web page. Using a markup system, you have the flexibility to implement as
many different output formats as you need.

Markup Languages Documentation and code are different views of the same underlying model, but the view is all that should be different.

Treat English as just another programming language.

Build documentation in, don't bolt it on.

If there's a discrepancy, the code is what matters—for better or worse.

Great ExpectationsGreat Expectations

Communicating Expectations Users initially come to you with some vision of what they want. You cannot just ignore it. Everyone should
understand what's expected and how it will be built.

The Extra Mile Give users that little bit more than they were expecting.

- Balloon or ToolTip help
- Keyboard shortcuts
- A quick reference guide as a supplement to the user's manual Colorization
- Log file analyzers
- Automated installation
- Tools for checking the integrity of the system
- The ability to run multiple versions of the system for training
- A splash screen customized for their organization

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 20 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

Pragmatic Programming Cheat Sheet
by Marco Santos (marconlsantos) via cheatography.com/39521/cs/12272/

Great Expectations (cont)Great Expectations (cont)

Pride and
Prejudice

Pragmatic Programmers don't shirk from responsibility. Instead, we rejoice in accepting challenges and in making our expertise
well known. We want to see pride of ownership. "I wrote this, and I stand behind my work."

Sign Your Work.Sign Your Work.

The success of a project is measured by how well it meets the expectations of its users.

Gently Exceed Your Users' Expectations.Gently Exceed Your Users' Expectations.

AcknowledgementsAcknowledgements

Built from Hugo Matilla's summary. You should still read the book, if you haven't already.You should still read the book, if you haven't already.

By Marco SantosMarco Santos
(marconlsantos)

cheatography.com/marconlsantos/

Published 12th September, 2018.
Last updated 14th February, 2021.
Page 21 of 21.

Sponsored by CrosswordCheats.comCrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

http://www.cheatography.com/
http://www.cheatography.com/marconlsantos/
http://www.cheatography.com/marconlsantos/cheat-sheets/pragmatic-programming
https://github.com/HugoMatilla/The-Pragmatic-Programmer
http://www.cheatography.com/marconlsantos/
http://crosswordcheats.com

	Pragmatic Programming Cheat Sheet - Page 1
	A Pragmatic Philosophy
	Software Entropy
	Stone Soup and Boiled Frogs
	Good enough soup
	Your Knowledge Portfolio

	Pragmatic Programming Cheat Sheet - Page 2
	Communicate!
	A Pragmatic Approach
	The Evils of Duplication

	Pragmatic Programming Cheat Sheet - Page 3
	Orthogonality
	Reversibility
	Tracer Bullets

	Pragmatic Programming Cheat Sheet - Page 4
	Prototypes and Post-it Notes

	Pragmatic Programming Cheat Sheet - Page 5
	Domain Languages
	Estimating
	The Basic Tools
	The Power of Plain Text
	Shell Games

	Pragmatic Programming Cheat Sheet - Page 6
	Power Editing
	Source Code Control
	Debugging

	Pragmatic Programming Cheat Sheet - Page 7
	Text Manipulation
	Code Generators
	A Pragmatic Paranoia
	Design by Contract

	Pragmatic Programming Cheat Sheet - Page 8
	Dead Programs Tell No Lies
	Assertive Programming
	When to Use Exceptions
	How to Balance Resources
	Bend, or Break
	Decoupling and the Law of Demeter

	Pragmatic Programming Cheat Sheet - Page 9
	Metaprogramming

	Pragmatic Programming Cheat Sheet - Page 10
	Temporal Coupling
	Workflow
	Architecture
	Design for Concurrency

	Pragmatic Programming Cheat Sheet - Page 11
	Deployment
	It's Just a View
	Blackboards

	Pragmatic Programming Cheat Sheet - Page 12
	While you are coding
	Program by Coincidence
	Algorithm Speed

	Pragmatic Programming Cheat Sheet - Page 13
	Refactoring
	Code That's Easy to Test

	Pragmatic Programming Cheat Sheet - Page 14
	Evil Wizards
	Before the project
	The Requirements Pit

	Pragmatic Programming Cheat Sheet - Page 15
	Solving Impossible Puzzles
	Not Until You're Ready

	Pragmatic Programming Cheat Sheet - Page 16
	The Specification Trap
	Circles and Arrows
	Pragmatic Projects
	Pragmatic Teams

	Pragmatic Programming Cheat Sheet - Page 17
	Ubiquitous Automation

	Pragmatic Programming Cheat Sheet - Page 18
	Ruthless testing

	Pragmatic Programming Cheat Sheet - Page 19
	Pragmatic Programming Cheat Sheet - Page 20
	It's All Writing
	Great Expectations

	Pragmatic Programming Cheat Sheet - Page 21
	Acknowledgements

