\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{Manasa} \pdfinfo{ /Title (scikit-learn-python.pdf) /Creator (Cheatography) /Author (Manasa) /Subject (Scikit-Learn Python Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A30A0A} \definecolor{LightBackground}{HTML}{FCF7F7} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Scikit-Learn Python Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{Manasa} via \textcolor{DarkBackground}{\uline{cheatography.com/121399/cs/22207/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}Manasa \\ \uline{cheatography.com/manasa} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 30th March, 2020.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Machine Learning}} \tn % Row 0 \SetRowColor{LightBackground} Supervised Learning & Unsupervised learning \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} The model maps input to an output based on the previous input-output pairs & No training is given to the model and it has to discover the features of input by self training mechanism. \tn % Row Count 8 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Scikit learn can be used in Classi¬fic¬ation, Regres¬sion, Cluste¬ring, Dimens¬ion¬ality reduct¬ion¬,Model Selection and prepro¬cessing by supervised and unsupe¬rvised training models.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Basic Commands}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} from sklearn import neighbors, datasets, preprocessing} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} from sklearn.model\_selection import train\_test\_split} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} from sklearn.metrics import accuracy\_score} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} iris = datasets.load\_iris()} \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} X, y = iris.data{[}:, :2{]}, iris.target} \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, random\_state=33)} \tn % Row Count 9 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} scaler = \seqsplit{preprocessing.StandardScaler().fit(X\_train)}} \tn % Row Count 11 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} X\_train = \seqsplit{scaler.transform(X\_train)}} \tn % Row Count 12 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} X\_test = \seqsplit{scaler.transform(X\_test)}} \tn % Row Count 13 (+ 1) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} knn = \seqsplit{neighbors.KNeighborsClassifier(n\_neighbors=5)}} \tn % Row Count 15 (+ 2) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} knn.fit(X\_train, y\_train)} \tn % Row Count 16 (+ 1) % Row 11 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} y\_pred = knn.predict(X\_test)} \tn % Row Count 17 (+ 1) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} accuracy\_score(y\_test, y\_pred)} \tn % Row Count 18 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Loading Data example}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} import numpy as np} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} X = np.random.random((20,2))} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} y = np.array({[}'A','B','C','D','E','F','G','A','C','A','B'{]})} \tn % Row Count 4 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} X{[}X \textless{} 0.7{]} = 0} \tn % Row Count 5 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The data being loaded should be numeric and has to be stored as NumPy arrays or SciPy sparse matrices.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.55618 cm} x{1.51041 cm} x{1.51041 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Processing Loaded Data}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Standardization} & \seqsplit{Normalization} & Binarization \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.preprocessing} import \seqsplit{StandardScaler} & \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.preprocessing} import Normalizer & \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.preprocessing} import Binarizer \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \textgreater{}\textgreater{}\textgreater{} scaler = \seqsplit{StandardScaler()}.fit(X\_train) & \textgreater{}\textgreater{}\textgreater{} scaler = \seqsplit{Normalizer().fit(X\_train)} & \textgreater{}\textgreater{}\textgreater{} binarizer = \seqsplit{Binarizer(threshold=0}.0).fit(X) \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \textgreater{}\textgreater{}\textgreater{} \seqsplit{standardized\_X} = \seqsplit{scaler.transform(X\_train)} & \textgreater{}\textgreater{}\textgreater{} \seqsplit{normalized\_X} = \seqsplit{scaler.transform(X\_train)} & \textgreater{}\textgreater{}\textgreater{} binary\_X = \seqsplit{binarizer.transform(X)} \tn % Row Count 14 (+ 4) % Row 4 \SetRowColor{LightBackground} \textgreater{}\textgreater{}\textgreater{} \seqsplit{standardized\_X\_test} = \seqsplit{scaler.transform(X\_test)} & \textgreater{}\textgreater{}\textgreater{} \seqsplit{normalized\_X\_test} = \seqsplit{scaler.transform(X\_test)} & \tn % Row Count 18 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Training And Test Data}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} from sklearn.model\_selection import train\_test\_split} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} X\_train, X\_test, y\_train, y\_test = train\_test\_split(X,y,random\_state=0)} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.64772 cm} x{1.28156 cm} x{1.64772 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Creating Model}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{3}{x{5.377cm}}{Supervised Learning Estimators} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Linear Regression & Support Vector Machines (SVM) & Naive Bayes \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.linear\_model} import \seqsplit{LinearRegression} & \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.svm} import SVC & \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.naive\_bayes} import GaussianNB \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} \textgreater{}\textgreater{}\textgreater{} lr = \seqsplit{LinearRegression(normalize=True)} & \textgreater{}\textgreater{}\textgreater{} svc = \seqsplit{SVC(kernel='linear')} & \textgreater{}\textgreater{}\textgreater{} gnb = GaussianNB() \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Creating Model}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Unsupervised Learning Estimators} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Principal Component Analysis (PCA) & K Means \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.decomposition} import PCA & \textgreater{}\textgreater{}\textgreater{} from sklearn.cluster import KMeans \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \textgreater{}\textgreater{}\textgreater{} pca = \seqsplit{PCA(n\_components=0.95)} & \textgreater{}\textgreater{}\textgreater{} k\_means = \seqsplit{KMeans(n\_clusters=3}, random\_state=0) \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.09034 cm} x{2.88666 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Model Fitting}} \tn % Row 0 \SetRowColor{LightBackground} Supervised Learning & Unsupervised learning \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \textgreater{}\textgreater{}\textgreater{} lr.fit(X, y) & \textgreater{}\textgreater{}\textgreater{} k\_means.fit(X\_train) \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \textgreater{}\textgreater{}\textgreater{} \seqsplit{knn.fit(X\_train}, y\_train) & \textgreater{}\textgreater{}\textgreater{} pca\_model = \seqsplit{pca.fit\_transform(X\_train)} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} svc.fit(X\_train, y\_train)} \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.63781 cm} x{2.33919 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Predicting output}} \tn % Row 0 \SetRowColor{LightBackground} Supervised Estimators & Unsupervised Estimators \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \textgreater{}\textgreater{}\textgreater{} y\_pred = \seqsplit{svc.predict(np.random.random((2},5))) & \textgreater{}\textgreater{}\textgreater{} y\_pred = \seqsplit{k\_means.predict(X\_test)} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} y\_pred = lr.predict(X\_test)} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} y\_pred = \seqsplit{knn.predict\_proba(X\_test))}} \tn % Row Count 7 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.55618 cm} x{1.51041 cm} x{1.51041 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Classification Metrics Model Performance}} \tn % Row 0 \SetRowColor{LightBackground} Accuracy Score & \seqsplit{Classification} Report & Confusion Matrix \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \textgreater{}\textgreater{}\textgreater{} \seqsplit{knn.score(X\_test}, y\_test) & \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.metrics} import \seqsplit{classification\_report} & \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.metrics} import \seqsplit{confusion\_matrix} \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.metrics} import \seqsplit{accuracy\_score} & \textgreater{}\textgreater{}\textgreater{} \seqsplit{print(classification\_report(y\_test}, y\_pred))) & \textgreater{}\textgreater{}\textgreater{} \seqsplit{print(confusion\_matrix(y\_test}, y\_pred))) \tn % Row Count 11 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{3}{x{5.377cm}}{\textgreater{}\textgreater{}\textgreater{} accuracy\_score(y\_test, y\_pred)} \tn % Row Count 12 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.55618 cm} x{1.51041 cm} x{1.51041 cm} } \SetRowColor{DarkBackground} \mymulticolumn{3}{x{5.377cm}}{\bf\textcolor{white}{Clustering Metrics Model Performance}} \tn % Row 0 \SetRowColor{LightBackground} Adjusted Rand Index & Homogeneity & \seqsplit{Cross-Validation} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.metrics} import \seqsplit{adjusted\_rand\_score} & \textgreater{}\textgreater{}\textgreater{} from \seqsplit{sklearn.metrics} import \seqsplit{homogeneity\_score} & \textgreater{}\textgreater{}\textgreater{} \seqsplit{print(cross\_val\_score(knn}, X\_train, y\_train, cv=4)) \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} \textgreater{}\textgreater{}\textgreater{} \seqsplit{adjusted\_rand\_score(y\_true}, y\_pred)) & \textgreater{}\textgreater{}\textgreater{} \seqsplit{homogeneity\_score(y\_true}, y\_pred)) & \textgreater{}\textgreater{}\textgreater{} \seqsplit{print(cross\_val\_score(lr}, X, y, cv=2)) \tn % Row Count 11 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}---} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}