
OOP implementation in JAVA Cheat Sheet
by mahdi007 via cheatography.com/139761/cs/29549/

OOP goalsOOP goals

Simple
modeling

An accurate representation of
the real world by grouping
objects with their properties
and actions

Robustness Easy maintenance and bug
detection. Strong typing
which results in more robust
code (predictable behavior of
your code)

Scalability Adding functionality comes
down to establishing new
connections with other
objects and methods.

Reusability Available features allowing
code reusability. (inher‐
itance)

OOP building blocksOOP building blocks

ClassClass A blueprint of an object: its
properties, behavior and how it
interacts with the exterior world.

AttributesAttributes
&&
methodsmethods

The attributes are the
properties of an object while the
methods represents its dynamic
behavior inside of your
program. These attributes and
methods define how the object
should be accessed, its internal
behavior and how it interacts
other objects

OOP building blocks (cont)OOP building blocks (cont)

ObjectsObjects An instance of a class. (the class
is the type definition and the
object is the variable) => all
instances of a class share the
same fields but have distinct data
inside.
In addition to its state (properties)
and behavior (methods) an object
has an identity which distincts it
from other objects (alias/ memory
address ...)

OOP ParadigmsOOP Paradigms

Abstra‐
ction

The selection of only useful
information about an object for a
particular application.

Encaps
ulation

Is the ability to control the access
to the object's properties and
methods, render them either
visible (public) or hidden (visible
only to internal functions).

Polymo
rphisme

The definition of different
executions of a methode for
different inputs and for different
objects

OOP Paradigms (cont)OOP Paradigms (cont)

Heritage A description of a general\s‐
pecific relationship between
classes. In shorts a subclass
has all the properties/ actions
of its super class + its own
ones + its redefined ones

Compos‐
ition,
Agregation

The creation of a class/object
as a collection of other
objects

JAVA general infosJAVA general infos

JAVA platform = JVM + API JAVA

JVM : execution environment for JAVA
apps.
Allows code to be machine independant as
it executes inside of a virtual machine which
abstracts the specefics of input\output,
hardware configuration, and different OSs.
JVM has its own native language : byte
code (juts like a real computer has its own
instruction set)
The JVM interprets byte code and manages
memeory for the programs automatically by
its Garbage collector

JAVA API : libraries that abstracts diverse
functionalities.

JAVA main function (entry point)JAVA main function (entry point)

public class test{
public static void main(String
ar[]){
// code
}
}

By mahdi007mahdi007
cheatography.com/mahdi007/

Published 26th October, 2021.
Last updated 26th October, 2021.
Page 1 of 2.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/mahdi007/
http://www.cheatography.com/mahdi007/cheat-sheets/oop-implementation-in-java
http://www.cheatography.com/mahdi007/
https://apollopad.com

OOP implementation in JAVA Cheat Sheet
by mahdi007 via cheatography.com/139761/cs/29549/

Array declarationArray declaration

In java you must allocate the memory for array frst by
type [] name=new type[size] or type name[] = new
 type[size]
Then if the type is not primitive you need to instantiate each
field of the array by
array_name[i]=new type(constructor attrib
utes)
Also, we can declare arrays like this
type array_name[]={val1,val2,val3};

StringsStrings

Declaration: Declaration:
String s="sample text";
String s=new String("sample text"
)
Some string methods:Some string methods:
s.equals(s2);returns 1 is s=s2 and 0
otherwise
s3=s1.concat(s2); <=> s3=s1+s2;
to concatenate strings

I/OI/O

INPUTINPUT in the header of the class file :
import java.util.Scanner;
in the method:
Scanner sc = new Scanner(System.i
n);
int i = sc.nextInt();
double d = sc.nextDouble();
long l = sc.nextLong();
byte b = sc.nextByte(); // etc

I/O (cont)I/O (cont)

OUTPUTOUTPUT for single variables:
System.out.println(single variable
);
for multiple variables:
System.out.println(var1+" "+va‐
r2+...);
the idea is to convert variables to strings and
concatenate them

Garbage CollectionGarbage Collection

//The garbage collector
deallocates memory of
unreferenced objects
//example
cl obj1=new cl();
System.gc();
//the GC does nothing here since
obj 1 is still referenced
cl=null;
System.gc();
//the GC deallocates the memory
previously allocated for obj1
since it's no longer referenced
//This makes the life of a
programmer (for example when
freeing an array of objects : a
single command instead of a loop

Properties of static class membersProperties of static class members

Static attributes are initialized as follows:
ints, floats -> 00, bools -> falsefalse, references ->
nullnull

static methods have access only to static
methods and attributes of a class (obviousl‐
y).They can't have use the "thisthis" reference
since it doesn't make any sense.

Class_name.static_atrribu
te_name
Class_name.static_method_
name()

Class members visibilityClass members visibility

By mahdi007mahdi007
cheatography.com/mahdi007/

Published 26th October, 2021.
Last updated 26th October, 2021.
Page 2 of 2.

Sponsored by ApolloPad.comApolloPad.com
Everyone has a novel in them. Finish
Yours!
https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/mahdi007/
http://www.cheatography.com/mahdi007/cheat-sheets/oop-implementation-in-java
https://cheatography.com/uploads/mahdi007_1635263754_Screenshot%202021-10-26%20165545.png
http://www.cheatography.com/mahdi007/
https://apollopad.com

	OOP implementation in JAVA Cheat Sheet - Page 1
	OOP goals
	JAVA general infos
	OOP Paradigms
	OOP building blocks
	JAVA main function (entry point)

	OOP implementation in JAVA Cheat Sheet - Page 2
	Array declaration
	Class members visibility
	Garbage Collection
	Strings
	I/O
	Properties of static class members

