

Probability - Midterm Cheat Sheet by madsysharma via cheatography.com/208834/cs/44841/

Special Distributions (Discrete RVs)			
E and Var	NAME	RX	PMF
p & p(1-p)	Bernou- lli(p)	{0,1}	p for x=1, 1-p for x=0
1/p and (1- p)/p ²	Geomet ric(p)	Z ⁺	$p(1-p)^{(k-1)}$ for $k \in \mathbb{Z}^+$
np and np(1-p)	Binomi- al(n,p)	{0,1,,n}	${}^{n}C_{k} \cdot p^{k} \cdot (1-p)^{(n-k)}$ for $k = 0$ to
m/p and (m.(1 p))/p ²	Pascal- (m,p)	{m,m+1, m+2}	$^{(k-1)}C(m-1)$ $p^m \cdot (1-p)^{(k-m)}$ for $k = m, m+1, m+2, m+3,$
np and ((b+r n)/(b+r- 1)).n- p(1-p)	Hyperg- eometr- ic(b,r,k)	{max(0,k -r), max(0,k- r)+1,, min(k,b)}	$({}^{b}C_{X} \cdot {}^{r}C_{(k-x)})/({}^{(b+r)}C_{k})$ $\forall x \in R_{X}$
Both equal to lambda	Poisso- n(l- ambda)	Z ⁺	(e ^{-lambda} . lambda ^k)/k! for k C R _X

Continuous RVs, PDFs and Mixed RVs

RV X with CDF $F_X(x)$ is continuous if $F_X(x)$ is a continuous function $\forall x \in R$ PMF doesn't work for CRVs, since $\forall x \in R$, $P_X(x) = 0$. Instead, PDFs are used. PDF = $f_X(x) = dF_X(x)/dx$ (if $F_X(x)$ is differentiable at x) >=0 $\forall x \in R$. P(a<X<=b) = integral from a to b ($f_X(u)$.du) and integral from -inf to +inf ($f_X(u)$.du) = 1

Continuous RVs, PDFs and Mixed RVs (cont)

EX = integral from -inf to +inf $(x \cdot f_X(x) \cdot dx)$

and E[g(X)] = integral from -inf to +inf (g(x) . $f_X(x)$. dx)

Var(X) = integral from -inf to +inf (x^2 . $f_X(x)$. dx - mu^2_X)

If g: R-> R is strictly monotonic and differentiable, then PDF of Y=g(X) is $f_Y(y)$ = $f_X(x_1)$. $|dx_1/dy|$ where $g(x_1)$ =y and 0 if g(x)

Joint Distributions: RVs >= 2

= y has no solution

Joint PMF of X and Y = $P_{XY}(x,y) = P(X=x,y)$ Y=y) = P((X=x) and (Y=y)) and Joint range = $R_{XY} = \{(x,y)| P_{XY}(x,y) > 0\}$ and summing up PXY over all (x,y) pairs will result in 1 Marginal PMF of $X = P_X(x) = \text{sum over all } y_i$ $GR_Y(P_{XY}(x, y_i))$ for any $x GR_X$. Similarly, Marginal PMF of Y = $P_Y(y)$ = sum over all x_i $G_{XY}(P_{XY}(x_i, y))$ for any $y G_{Y}$ To show independence between X and Y, prove $P(X = x, Y=y) = P(X=x) \cdot P(Y=y)$ for all x-y pairs. Similarly, for conditional independence, show that P(Y=y|X=x) = P(Y=y) for all x-y pairs Joint CDF = $F_{XY}(x,y) = P(X \le x, Y \le y)$ and Marginal CDF for $X = F_X(x) = limit y to$ $\inf(F_{XY}(x,y))$ for any x and Marginal CDF for $Y = F_Y(y) = \text{limit } x \text{ to inf } (F_{XY}(x,y)) \text{ for }$ any y Conditional expectation: $E[X|Y=y_i] = sum$ over all $x_i \in R_X(x_i . P_{X|Y}(x_i|y_i))$ NOTE: $F_{XY}(inf,inf) = 1$, $F_{XY}(-inf,y) = 0$ for any y and $F_{XY}(x,-inf) = 0$ for any x $P(x_1 < X \le x_2, y_1 < Y \le y_2) = F_{XY}(x_1, y_1)$ $+ F_{XY}(x_2,y_2) - F_{XY}(x_2,y_1) - F_{XY}(x_1,y_2)$ Conditional PMF given event $A = P_{X|A}(x_i) =$ $P(X=x_i|A) = P(X=x_i \text{ and } A)/P(A) \text{ for any } x_i \in$ R_X and Conditional CDF = $F_{X|A}(x)$ = P(X)<= x | A)

Joint Distributions: RVs >= 2 (cont)

Given RVs X and Y, $P_{X|Y}(x_i, y_j) = P_{XY}(x_i, y_j)/P_Y(y_j)$. Similarly for Y|X E[X + Y] = E[X] + E[Y] - independence not required E[X . Y] = E[X] . E[Y] - independence IS required

Problem Solving Techniques

* CARD PROBLEMS:

Number of ways to pick k suits = ${}^{4}C_{k}$ with k=1,2,3,4

* n BALLS, r BINS:

- Distinguishable balls: each ball can go into any 1 of r bins. The # of distinct perms would be ${}^{r}P_{n} = r^{n}$
- Indistinguishable balls: there will be 2 cases:
- * No empty bins. Occupancy vector is $x_1+...+x_r=n$ where every x is >= 1. There can be n-1 possible locations for bin dividers from which we can choose r-1 to keep >= 1 ball in each bin. # of possible arrangements = $\binom{(n-1)}{(r-1)}$.
- * Bin may have 0 balls. Then the occupancy vector would be $y_1+...+y_r=n+r$ and the # of arrangements will be ${}^{(n+r-1)}C_{(r-1)}$
- * COMMITTEE SELECTION: Solve using product rule/hypergeometric approach.

* HAT MATCHING PROBLEM:

➤ Probability of k men drawing their own hats (over all k-tuples) = (ⁿC_k(n-k)!)/n! = 1/k! # of derangements = n![1-1/1!+1/2!--1/3!+...+(-1)ⁿ/n!]

> P(k matches) = [1/2! - 1/3! + 1/4! -...+(-1)^(n-k)/(n-k)!]/k!

Ву

By madsysharma

Not published yet.

Last updated 11th December, 2024.

Page 1 of 3.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Probability - Midterm Cheat Sheet by madsysharma via cheatography.com/208834/cs/44841/

Problem Solving Techniques (cont)

* DRAWING THE ONLY SPECIAL BALL FROM n BALLS IN k TRIALS:

Total # of outcomes = ${}^{n}C_{k} = {}^{[1 + (n-1)]}C_{k} = {}^{1}C_{0}{}^{(n-1)}C_{k} + {}^{1}C_{1}{}^{(n-1)}C_{(k-1)}$, with term #1 denoting no special ball, and term #2 denoting the special ball

*Total # of roundtable arrangements with k people = k!/k = (k-1)!

* SYSTEM RELIABILITY ANALYSIS:

- > P(fail)=p, P(success)=1-p
- ➤ For parallel config, 2ⁿ-1 successes and 1 failure, P(fail)=pⁿ
- ➤ For series config, 2ⁿ-1 failures and 1 success, P(success) = (1-p)ⁿ
- ➤ For series connections, take intersection, and for parallel connections take union
- * PMF FOR SUM, DIFF, MAX, MIN OF 4-SIDED DICE:
- \blacktriangleright Uniform PMF = $P_{XY}(x,y) = 1/16$
- ➤ For each (x,y) point in the Cartesian coordinate diagram, calculate the diff/sum label or min/max label.
- ➤ Write down tables for Joint, Marginal and Conditional PMFs
- ▶ Headers are: $x y P_{XY}(x,y) x P_{X}(x) y$ $P_{Y}(y) x y P_{Y|X}(y,x)$. First 3 for joint, next 4 for marginal, the remaining for conditional
- ➤ For marginal, plot PMF on y-axis and RV value on x-axis.
- > For joint, plot y on y-axis and x on x-axis

Facts for PMFs and RV Distributions

 $0 \le P_X(x) \le 1 \ \forall \ x \text{ and Sum over all } x \in R_X$ $(P_X(x)) = 1$

For any set $A \subseteq R_X$, $P(X \subseteq A) = \sum_{X \subseteq A} P_X(x)$ RVs X and Y are independent if P(X = x, Y = y) = P(X = x) * P(Y = y), $\forall x, y$ The first formula can be extended to n times. P(Y = y | X = x) = P(Y = y), $\forall x, y$ if X & Y are independent

If $X_1,...,X_n$ are independent Bernoulli(p) RVs, then $X=X_1+X_2+...+X_n$ has Binomial(n,p) distribution, and **Pascal (1,p) = Geometric (p)**

TYPE, PDF & E[X] AND VAR(X) Uniform(a, b) || 1/(b-a) if a<x
b || (a+b)/2 and (b-a) 2 /12

$$\begin{split} & \text{Exponential(lambda)} \parallel \text{lambda} \cdot e^{(-\text{lambda} \cdot x)} \\ \parallel 1/\text{lambda} \text{ and } 1/(\text{lambda})^2 \\ & \text{Normal/Gaussian, ie: N(0,1)} \parallel (1/\text{sqrt}(2 \cdot pi)) \cdot \exp(-x^2/2), \ \forall \ x \in R \parallel 0 \ \text{and } 1 \\ & \text{Gamma (alpha, lambda)} \parallel (\text{lambda}^{\text{alpha}} \cdot x^{(\text{alpha}-1)} \cdot e^{(-\text{lambda} \cdot x)})/(\text{alpha}-1)! \ \text{for } x > 0 \parallel \text{alpha/lambda} \ \text{and } EX/\text{lambda} \end{split}$$

CDF: $F_X(x) = P(X \le x) \forall x \in R$ and $P(a \le X \le b) = F_X(b) - F_X(a)$

Counting Principles, n-nomial Expansions

Permutations of n distinct objs. take n w/ r groups of indistinct objs. = $(n!)/(n_1! ... n_r!)$ ${}^{n}P_{r} = {}^{r}$ and ${}^{n}C_{r} = {}^{(n+r-1)}C_{r}$: for perms and combs where k objs are taken at a time $(a+b)^n$ = Sum over k ($^nC_ka^kb^{(n-k)}$) where k=0,...,n Binomial coeff. identity: ${}^{n}C_{k} = {}^{(n-1)}C_{(k-1)} +$ $^{(n-1)}C_k$ where first term maps to A and second to AC ${}^{n}C_{m} = {}^{n}C_{n-m}$ Sum over $r(^{n}C_{r}(-1)^{r}(1)^{(n+r)})$ is 0 where r=0,...n Sum over r $((^{n}C_{r})^{2}) = {}^{2n}C_{n}$ where r=0,...,n Sum over s (${}^{s}C_{m}$) = ${}^{n}(n+1)C_{m}$ (m+1) where s=m,..,n Hypergeometric expansion: $^{(n+m)}C_r =$ ${}^{n}C_{0}{}^{m}C_{r} + {}^{n}C_{1}{}^{m}C_{(r-1)} + ... + {}^{n}C_{r}{}^{m}C_{0}$ a CE and ME enumeration $n! = (n/e)^n x root(2n x pi) - Stirling's approx.$ Trinomial expansion: (a+b+c)ⁿ = sum over i, j, k (C'aⁱb^jc^k) where i, j, k=0,...n and i+j+k=n and C'=n!/(i!j!k!) In n-nomial expansion $(a_1 + ... + a_r)^n$, the #

Expectation, Variance, RV Functions

1)C(r-1)

Expected value of X, ie: $EX/E[X]/mu_X =$ sum over all $x_k \in R_X (x_k \cdot P(X = x_k))$. It is linear $E[aX + b] = aE[X] + b, \forall a,b \in R$

of terms in the sum is ${}^{r}C_{n} = {}^{(r+n-1)}C_{n} = {}^{(r+n-1)}C_{n}$

 $E[X_1 + ... + X_n] = E[X_1] + ... + E[X_n]$

If X is an RV and Y=g(X), then Y is also an RV.

By madsysharma

Not published yet.

Last updated 11th December, 2024.

Page 2 of 3.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/madsysharma/

Probability - Midterm Cheat Sheet by madsysharma via cheatography.com/208834/cs/44841/

Expectation, Variance, RV Functions (cont)

 $R_Y = \{g(x) \mid x \in R_X\}$ and $P_Y(y) = sum over$

all x:g(x)=y ($P_X(x)$)

 $E[g(X)] = sum over all x_k \in R_X (g(x_k))$.

 $P_X(x_k)$) (LOTUS)

 $Var(X) = E[(X - mu_X)^2] = sum over all x_k \in$

 $R_X ((x_k - mu_X)^2.P_X(x_k))$

 $SD(X)/sigma_X = sqrt(Var(X))$

Covariance = Cov(X,Y) = E[XY] - E[X].E[Y],

which will be 0 if X & Y are independent

 $Var(X) = Cov(X,X) = E[X^2] - (E[X])^2$

 $Var(aX + b) = a^2 Var(X)$, and if $X = X_1 + ... +$

 X_n , then $Var(X) = Var(X_1) + ... + Var(X_n)$

 $Var(aX + bY) = a^{2}Var(X) + b^{2}Var(Y) +$

2abCov(X,Y)

 $Var(total up to X_n) = sum of all <math>Var(X_i)$ if X_i

is mutually independent for i = 1...n.

Summing up over the same conditions for expected values holds true, regardless of

independence or not

Correlation coefficient = Cov(X,Y)/(SD(X)).

SD(Y)) - ranges between -1 and 1 (inclusive

for both limits)

Z-standardized transformation: Z=(X -

 mu_X)/SD(X) - zero mean and unit variance

By madsysharma

cheatography.com/madsysharma/

Not published yet.

Last updated 11th December, 2024.

Page 3 of 3.

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com