Cheatography

Probability - Midterm Cheat Sheet
by madsysharma via cheatography.com/208834/cs/44841/

Special Distributions (Discrete RVs)				
E and Var	NAME	Rχ	PMF	
р & p(1-p)	Bernou- lli(p)	{0,1}	p for x=1, 1-p for x=0	
1/p and (1- p)/p ²	Geomet ric(p)	Z ⁺	$p(1-p)^{(k-1)}$ for k $\ominus Z^+$	
np and np(1-p)	Binomi- al(n,p)	{0,1,,n}	${}^{n}C_{k} \cdot p^{k} \cdot (1-p)^{(n-k)}$ for k = 0 to n	
m/p and (m.(1 p))/p ²	Pascal- (m,p)	{m,m+1, m+2}	$^{(k-1)}C(m-1)$. $p^m . (1-p)^{(k-m)}$ for k = m, m+1, m+2, m+3, 	
np and ((b+r n)/(b+r- 1)).n- p(1-p)	Hyperg- eometr- ic(b,r,k)	{max(0,k -r), max(0,k- r)+1,, min(k,b)}	(^b C _x . ^r C _{(k-} x))/(^(b+r) C _k) ∀x	
Both equal to lambda	Poisso- n(l- ambda)	Ζ+	(e ^{-lambda} . lambda ^k)/k! for k G R _X	

Continuous RVs, PDFs and Mixed RVs

RV X with CDF $F_X(x)$ is continuous if $F_X(x)$ is a continuous function $\forall x \in R$ PMF doesn't work for CRVs, since $\forall x \in R$, $P_X(x) = 0$. Instead, PDFs are used. PDF = $f_X(x) = dF_X(x)/dx$ (if $F_X(x)$ is differentiable at x) >=0 \forall x \in R. $P(a < X <= b) = integral from a to b (f_X(u).du)$ and integral from -inf to +inf (f_X(u) . du) = 1

By madsysharma

cheatography.com/madsysharma/

Continuous RVs, PDFs and Mixed RVs

EX = integral from -inf to +inf (x . $f_X(x)$. dx) and E[g(X)] = integral from -inf to +inf (g(x). $f_{\chi}(x) \cdot dx$ Var(X) = integral from - inf to + inf (x² . f_X(x) . $dx - mu^2 \chi$) If g: R-> R is strictly monotonic and differentiable, then PDF of Y=g(X) is fy(y) =

 $f_X(x_1)$. $|dx_1/dy|$ where $g(x_1)=y$ and 0 if g(x)= y has no solution

Joint Distributions: RVs >= 2

Joint PMF of X and Y = $P_{XY}(x,y) = P(X=x, y)$ Y=y) = P((X=x) and (Y=y)) and Joint range = $R_{XY} = \{(x,y) | P_{XY}(x,y) > 0\}$ and summing up PXY over all (x,y) pairs will result in 1 Marginal PMF of $X = P_X(x) = sum over all y_i$ GRY (PXY(x, yi)) for any x GRX. Similarly, Marginal PMF of Y = $P_Y(y)$ = sum over all x_i $G R_X (P_{XY}(x_i, y))$ for any $y G R_Y$

To show independence between X and Y, prove P(X = x, Y=y) = P(X=x) . P(Y=y) for all x-y pairs. Similarly, for conditional independence, show that P(Y=y|X=x) = P(Y=y) for all x-y pairs

Joint CDF = FXY(x,y) = P(X<=x, Y<=y) and Marginal CDF for $X = F_X(x) =$ limit y to inf(FXY(x,y)) for any x and Marginal CDF for $Y = F_Y(y) = \text{limit } x \text{ to inf } (F_{XY}(x,y))$ for any y

Conditional expectation: E[X|Y=y_j] = sum over all $x_i \in R_X(x_i \cdot P_{X|Y}(x_i|y_i))$ NOTE: $F_{XY}(inf, inf) = 1$, $F_{XY}(-inf, y) = 0$ for any y and $F_{XY}(x,-inf) = 0$ for any x $P(x_1 < X \le x_2, y_1 < Y \le y_2) = F_{XY}(x_1, y_1)$ + $F_{XY}(x_2, y_2) - F_{XY}(x_2, y_1) - F_{XY}(x_1, y_2)$ Conditional PMF given event $A = P_{X|A}(x_i) =$ $P(X=x_i|A) = P(X=x_i \text{ and } A)/P(A) \text{ for any } x_i \in$ R_X and Conditional CDF = F_{XIA}(x) = P(X <= x | A)

Not published yet. Last updated 11th December, 2024. Page 1 of 3.

Joint Distributions: RVs >= 2 (cont)

Given RVs X and Y, $P_{X|Y}(x_i, y_i) =$ $P_{XY}(x_i, y_i)/P_{Y}(y_i)$. Similarly for Y|X E[X + Y] = E[X] + E[Y] - independence not required E[X . Y] = E[X] . E[Y] - independence ISrequired

Problem Solving Techniques

* CARD PROBLEMS:

Number of ways to pick k suits = ${}^{4}C_{k}$ with k=1.2.3.4

* n BALLS, r BINS:

- Distinguishable balls: each ball can go into any 1 of r bins. The # of distinct perms would be ${}^{r}P_{n} = r^{n}$

- Indistinguishable balls: there will be 2 cases:

* No empty bins. Occupancy vector is $x_1+...+x_r=n$ where every x is >= 1. There can be n-1 possible locations for bin dividers from which we can choose r-1 to keep >= 1 ball in each bin. # of possible arrangements = ${}^{(n-1)}C_{(r-1)}$.

* Bin may have 0 balls. Then the occupancy vector would be y₁+...+y_r=n+r and the # of arrangements will be (n+r-1)C(r-1)

* COMMITTEE SELECTION: Solve using product rule/hypergeometric approach.

* HAT MATCHING PROBLEM:

> Probability of k men drawing their own hats (over all k-tuples) = (ⁿC_k(n-k)!)/n! = 1/k! # of derangements = n![1-1/1!+1/2!--

1/3!+...+(-1)ⁿ/n!]

> P(k matches) = [1/2! - 1/3! + 1/4! -...+(- $1)^{(n-k)}/(n-k)!!/k!$

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Probability - Midterm Cheat Sheet by madsysharma via cheatography.com/208834/cs/44841/

Problem Solving Techniques (cont)

* DRAWING THE ONLY SPECIAL BALL FROM n BALLS IN k TRIALS: Total # of outcomes = ${}^{n}C_{k} = [1 + (n-1)]C_{k} =$

 ${}^{1}C_{0}{}^{(n-1)}C_{k} + {}^{1}C_{1}{}^{(n-1)}C_{(k-1)}$, with term #1 denoting no special ball, and term #2

denoting the special ball

*Total # of roundtable arrangements with k people = k!/k = (k-1)!

* SYSTEM RELIABILITY ANALYSIS:

> P(fail)=p, P(success)=1-p

➤ For parallel config, 2ⁿ-1 successes and 1 failure, P(fail)=pⁿ

For series config, 2^{n} -1 failures and 1 success, P(success) = $(1-p)^{n}$

 For series connections, take intersection, and for parallel connections take union
* PMF FOR SUM, DIFF, MAX, MIN OF 4-SIDED DICE:

> Uniform PMF = $P_{XY}(x,y) = 1/16$

For each (x,y) point in the Cartesian coordinate diagram, calculate the diff/sum label or min/max label.

> Write down tables for Joint, Marginal and Conditional PMFs

> Headers are: $x y P_{XY}(x,y) x P_X(x) y$

 $P_{Y}(y) \ge y P_{Y|X}(y,x)$. First 3 for joint, next 4

for marginal, the remaining for conditional For marginal, plot PMF on y-axis and RV

value on x-axis.

> For joint, plot y on y-axis and x on x-axis

Facts for PMFs and RV Distributions

 $0 \le P_X(x) \le 1 \forall x \text{ and } Sum \text{ over all } x \in R_X$ ($P_X(x)$) = 1

For any set $A \subseteq R_X$, $P(X \in A) = \sum_{X \in A} P_X(x)$ RVs X and Y are independent if P(X=x, x)

Y=y) = P(X=x) * P(Y=y), \forall x,y The first formula can be extended to n times. P(Y=y|X=x) = P(Y=y), \forall x,y if X & Y are independent

If X₁,...,X_n are independent Bernoulli(p)

RVs, then $X=X_1+X_2+...+X_n$ has Binomial(n,p) distribution, and **Pascal (1,p)** =

Geometric (p)

For distributions using parameter p, 0If X is of Binomial (n, p = lambda/n), withfixed lambda > 0. Then, for any k G Z, lim_n-

 $>inf^{P}X(k) = (e^{-lambda}.lambda^{k})/k!$

* SPECIAL DISTRIBUTIONS:

TYPE, PDF & E[X] AND VAR(X) Uniform(a, b) || 1/(b-a) if a<x<b || (a+b)/2 and (b-a)²/12 Exponential(lambda) || lambda . $e^{(-lambda . x)}$ || 1/lambda and 1/(lambda)² Normal/Gaussian, ie: N(0,1) || (1/sqrt(2 . pi)) . exp(-x²/2), $\forall x \in R || 0$ and 1 Gamma (alpha, lambda) || (lambda^{alpha}. x^(alpha -1) . $e^{(-lambda . x)}$)/(alpha -1)! for x>0 || alpha/lambda and EX/lambda CDF: F_X(x) = P(X <= x) $\forall x \in R$ and P(a <

 $X \le b$) = F_X(b) - F_X(a)

Counting Principles, n-nomial Expansions

Permutations of n distinct objs. take n w/ r groups of indistinct objs. = (n!)/(n₁! ... n_r!) ${}^{n}P_{r} = n^{r}$ and ${}^{n}C_{r} = (n+r-1)C_{r}$: for perms and combs where k objs are taken at a time $(a+b)^n = Sum \text{ over } k ({}^nC_k a^k b^{(n-k)})$ where k=0,...,n Binomial coeff. identity: ${}^{n}C_{k} = {}^{(n-1)}C_{(k-1)} +$ $^{(n-1)}C_k$ where first term maps to A and second to A^C $^{n}C_{m} = ^{n}C_{n-m}$ Sum over r $({}^{n}C_{r}(-1)^{r}(1)^{(n+r)}$ is 0 where r=0,...n Sum over r $(({}^{n}C_{r})^{2}) = {}^{2n}C_{n}$ where r=0,...,n Sum over s $({}^{s}C_{m}) = (n+1)C (m+1)$ where s=m,...,n Hypergeometric expansion: (n+m)Cr = ${}^{n}C_{0}{}^{m}C_{r} + {}^{n}C_{1}{}^{m}C_{(r-1)} + ... + {}^{n}C_{r}{}^{m}C_{0} a CE$ and ME enumeration $n! = (n/e)^n x root(2n x pi) - Stirling's approx.$ for n! Trinomial expansion: (a+b+c)ⁿ = sum over i, j, k (C'a^{ibj}c^k) where i, j, k=0,...n and i+j+k=n and C'=n!/(i!j!k!) In n-nomial expansion $(a_1 + ... + a_r)^n$, the # of terms in the sum is ${}^{r}G_{n} = {}^{(r+n-1)}C_{n} = {}^{(r+n-1)}C_{n}$ ¹⁾C(r-1)

Expectation, Variance, RV Functions

Expected value of X, ie: $EX/E[X]/mu_X =$ sum over all $x_k \in R_X (x_k . P(X = x_k))$. It is linear $E[aX + b] = aE[X] + b, \forall a, b \in R$ $E[X_1 + ... + X_n] = E[X_1] + ... + E[X_n]$ If X is an RV and Y=g(X), then Y is also an RV.

By madsysharma

Not published yet. Last updated 11th December, 2024. Page 2 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

cheatography.com/madsysharma/

Cheatography

Probability - Midterm Cheat Sheet by madsysharma via cheatography.com/208834/cs/44841/

Expectation, Variance, RV Functions (cont)

 $R_Y = \{g(x) \mid x \in R_X\}$ and $P_Y(y) = sum over$ all x:g(x)=y ($P_X(x)$) $E[g(X)] = sum over all x_k \in R_X (g(x_k))$. $P_X(x_k)$) (LOTUS) $Var(X) = E[(X - mu_X)^2] = sum over all x_k \oplus$ $R_X ((x_k - mu_X)^2 P_X(x_k))$ SD(X)/sigma_X = sqrt(Var(X)) Covariance = Cov(X,Y) = E[XY] - E[X].E[Y],which will be 0 if X & Y are independent $Var(X) = Cov (X,X) = E[X^{2}] - (E[X])^{2}$ $Var(aX + b) = a^{2}Var(X)$, and if $X = X_{1} + ... +$ X_n , then $Var(X) = Var(X_1) + ... + Var(X_n)$ $Var(aX + bY) = a^2Var(X) + b^2Var(Y) +$ 2abCov(X,Y) Var(total up to Xn) = sum of all Var(Xi) if Xi is mutually independent for i = 1...n. Summing up over the same conditions for expected values holds true, regardless of independence or not Correlation coefficient = Cov(X,Y)/(SD(X)). SD(Y)) - ranges between -1 and 1 (inclusive for both limits) Z-standardized transformation: Z=(X mu_X)/SD(X) - zero mean and unit variance

By madsysharma

cheatography.com/madsysharma/

Not published yet. Last updated 11th December, 2024. Page 3 of 3. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com