Cheatography

Probability - Midterm Cheat Sheet by [madsysharma](http://www.cheatography.com/madsysharma/) via [cheatography.com/208834/cs/44841/](http://www.cheatography.com/madsysharma/cheat-sheets/probability-midterm)

Basic terms

Sample space is the collection of all possible outcomes.

Events is a specific collection of outcomes.

Mutually exclusive indicates that the events are disjoint.

Collectively exhaustive indicates that the events cover the entire sample space.

n-nomial Expansions, Theorems and Identities

(a+b)ⁿ = Sum over k (ⁿC_ka^kb⁽ⁿ⁻ ^{k)}) where k goes from 0 to n Binomial coeff. identity: ${}^{n}C_{k}$ = ⁽ⁿ⁻ $^{1)}C_{(k-1)}$ + $^{(n-1)}C_k$ where first term corresponds to A and second to A^C ${}^nC_m = {}^nC_{n-m}$ Sum over r (ⁿC_r(-1)^r(1)^(n+r) is 0 where r goes from 0 to n Sum over r $((ⁿC_r)²) = ²ⁿC_n$ where r goes from 0 to n Sum over s $({}^{s}C_{m}) = {}^{s}(n+1)C^{-}$ (m+1) where s goes from m to n Hypergeometric expansion: $^{(n+m)}C_r = {}^nC_0 {}^mC_r + {}^nC_1 {}^mC_{(r-1)}$ + ... + ${}^nC_r{}^mC_0$ which is a CE and ME enumeration $n! = (n/e)^n \times root(2n \times pi)$ -Stirling's approx. for n!

n-nomial Expansions, Theorems and Identities (cont)

Trinomial expansion: $(a+b+c)^n =$ sum over i, j, k (C'aⁱb^jc^k) where i, j, k go from 0 to n and i+j+k=n and C'=n!/(i!j!k!) In an n-nomial expansion (a_1 + \dots + a_r)ⁿ, the # of terms in the sum is ${}^{r} \mathbf{G}_{n} = {}^{(r+n-1)} \mathbf{C}_{n} = {}^{(r+n-1)} \mathbf{G}_{n}$ ${}^{1)}C$ (r-1)

Basics of set theory

S=entire sample space=A u A^C where $A =$ any subset of S Null set (contains 0 members) = phi S^C=phi and phi^C=S $(A^C)^C = A$ A n $B = A.B = AB$ for all x iff x in A and x in B A u B = $\{x | x \in A \text{ and/or } x \in B\}$ $A - B = A \cdot B^C$ If A and B are ME, $A \cap B = phi$ If events E_1 to E_n are CE, then $E_1 u ... u E_n = S$ Commutative law: A u B = B u A and $A \cap B = B \cap A$ Associative law : A u (B u C) = (A u B) u C, similarly for inters‐ ection Distributive laws: A u (B n C) = $(A u B) n (A u C)$ and A n $(B u C)$ = (A n B) u (A n C) A n phi = phi and A u phi = A

Basics of set theory (cont)

A n S = A = A n (B u B^C) A u B = A u (A^C n B) = B u (B^C n A) $A = B$ iff A is a subset of B and

vice versa

Formulations of Probability

0<=P(E)<=1 P(S)=1 where S is the entire sample space For ME events A and B, P(A u B) $= P(A) + P(B)$ $1 = P(S) = P(E \cup E^{C}) = P(E) +$ $P(E^C)$ Probabilities for ME events are equal $P(A \cap B) = P(A)P(B)$ Inclusion-exclusion principle: $P(E_1 u ... u E_n) = (sum(P(E_i))$ for $i=1..n$) - (sum($P(E_iE_{i+1})$) for $i=1...n-1$ +... +/- $P(E_1E_2...E_n)$, ie: singles - pairs + triples quadruples + ... +/- n-tuple

Counting Principles

Sum rule for or cases and product rule for and cases Permutations consider order, combinations do not Permutations of n distinct objs. take $k = {}^{n}P_{k} = (n!)/(n-k)!$ Permutations of n distinct objs. take n w/ r groups of indistinct objs. = (n!)/(n₁! ... n_r!)

Counting Principles (cont)

Combinations of n objs. take $k =$ ${}^{n}C_{k} = (n!) / ((n-k)! * k!)$ ${}^{n}P_{r}$ = n^r and ${}^{n}G_{r}$ = ${}^{(n+r-1)}C_{r}$: used for situations involving permut‐ ations and combinations of n objs. with replacement taken k at a time

Conditional Probability

 $P(A|B) = P(AB)/P(B)$ Bayes' Rule: P(A|B)=(P(B|A)P‐ (A))/P(B)=(P(B|A)P(A))/(‐ $P(B|A)P(A) + P(B|A^C)P(A^C)$ Conditional probability is not symmetric

Hat Matching Problem

* n men throw their hats on the floor and each man randomly picks up his hat.

* If k men out of n draw their own hats, then the remaining men don't draw their own hats. Hence, the probability of k men drawing their own hats (over all k -tuples) = $({}^nC_k(n-k)!)/n! = 1/k!$

 $*$ P(k matches) = calculate the intersection probability using inclusion-exclusion principle and divide by k!

By madsysharma

Not published yet. Last updated 30th October, 2024. Page 1 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! <http://crosswordcheats.com>

[cheatography.com/madsysharma/](http://www.cheatography.com/madsysharma/)

Cheatography

Probability - Midterm Cheat Sheet by [madsysharma](http://www.cheatography.com/madsysharma/) via [cheatography.com/208834/cs/44841/](http://www.cheatography.com/madsysharma/cheat-sheets/probability-midterm)

Problem Patterns, Tips and **Solutions**

* Always sketch trees for problems involving product rule, with smaller use cases

* 5-card draw poker:

If the number of cards is n (usually 52), total # of ways of drawing 5 cards is ${}^{n}C_{5}$. Number of ways to pick one card value = $^{13}C_1$

Number of ways to pick k suits = 4C_k where k can go from 1 to 4.

* Balls and bins:

If there are n balls and r bins, there can be 2 scenarios: - if the balls are distinguishable, each ball can go into any one of r bins. Thus the # of distinct permutations would be ^rP_n = rⁿ - if the balls are indistinguis‐ hable, there will be 2 cases: * No bin should be empty. Occupancy vector is $x_1 + ... + x_r = n$ where every x is at least 1. In this case, there can be n-1 possible locations for bin separators from which we can choose r-1 to ensure at least 1 ball in each bin. # of possible arrangements = $(n-1)C(r-1)$.

Problem Patterns, Tips and Solutions (cont)

* A bin can have no balls. Then the occupancy vector would be $y_1 + ... + y_r = n + r$ and the # of arrangements will be ^(n+r-1)C_{(r-}

1)

*Selecting committees:

Can be solved using product rule or hypergeometric approach.

*Drawing the only special ball from n balls in k trials:

Total outcomes = ${}^nC_k = {}^{(1+(n-1))}$ 1)) $C_k = {}^1C_0$ ⁽ⁿ⁻¹⁾ $C_k + {}^1C_1$ ⁽ⁿ⁻¹)

 $^{1)}C_{(k-1)}$ - the first term is for no special ball and the second term is for the special ball. Alternati‐ vely, we can calculate using a tree diagram.

*Bridge hands:

Remember: each hand has 13 cards.

*Roundtable arrangements:

If there are k people sitting at a roundtable, total # of arrang‐ ements is k!/k

By madsysharma

[cheatography.com/madsysharma/](http://www.cheatography.com/madsysharma/)

Not published yet. Last updated 30th October, 2024. Page 2 of 2.

Sponsored by CrosswordCheats.com

Learn to solve cryptic crosswords! <http://crosswordcheats.com>