\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{madsonic} \pdfinfo{ /Title (st2334.pdf) /Creator (Cheatography) /Author (madsonic) /Subject (ST2334 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{ST2334 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{madsonic} via \textcolor{DarkBackground}{\uline{cheatography.com/21194/cs/3988/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}madsonic \\ \uline{cheatography.com/madsonic} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 27th April, 2015.\\ Updated 13th May, 2016.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Definitions}} \tn % Row 0 \SetRowColor{LightBackground} Sample Space & The set of all possible outcomes of an \seqsplit{experiment} is called the sample space and is denoted by Ω. & & \tn % Row Count 10 (+ 10) % Row 1 \SetRowColor{white} Sigma field & A \seqsplit{collection} of sets F of Ω is called a σ-field if it satisfies the following \seqsplit{conditions:} & & \tn % Row Count 20 (+ 10) % Row 2 \SetRowColor{LightBackground} & 1. ∅ ∈ F ~~~~2. If A1,...,∈ F then 􏰍U∞1 Ai ∈ F & & 3. If A ∈ F then A\textasciicircum{}c\textasciicircum{} ∈ F \tn % Row Count 28 (+ 8) % Row 3 \SetRowColor{white} \seqsplit{Probability} & A \seqsplit{probability} measure P on (Ω, F ) is a function P : F → {[}0, 1{]} which \seqsplit{satisfies:} & & \tn % Row Count 37 (+ 9) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 4 \SetRowColor{LightBackground} & 1.P(Ω)=1 and P(∅)=0 & 2. & \tn % Row Count 3 (+ 3) % Row 5 \SetRowColor{white} \seqsplit{Conditional} \seqsplit{Probability} & Consider \seqsplit{probability} space (Ω, F , P) and let A, B ∈ F with P(B) \textgreater{} 0. Then the \seqsplit{conditional} \seqsplit{probability} that A occurs given B occurs is defined to be: P(A|B) = P(A ∩ B) / P(B) & & \tn % Row Count 21 (+ 18) % Row 6 \SetRowColor{LightBackground} Total \seqsplit{Probability} & A family of sets B1, . ., Bn is called a partition of Ω if: ∀i !=j Bi ∩Bj =∅ and 􏰒U∞1 Bi =Ω & P(A) = ∑n1 \seqsplit{P(A|Bi)P(Bi)} & P(A) = ∑n1 P(A∩Bi) \tn % Row Count 32 (+ 11) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 7 \SetRowColor{LightBackground} \seqsplit{Independence} & Consider \seqsplit{probability} space (Ω, F , P) and let A, B ∈ F . A and B are \seqsplit{independent} if P(A ∩ B) = P(A)P(B) & & \tn % Row Count 11 (+ 11) % Row 8 \SetRowColor{white} & More generally, a family of F−sets A1,...,An (∞ \textgreater{} n ≥ 2) are \seqsplit{independent} \seqsplit{if􏰃􏰓􏰄􏰐} P(∩n1 Ai) = ∏ n1 P(Ai) & & \tn % Row Count 24 (+ 13) % Row 9 \SetRowColor{LightBackground} Random Variable (RV) & A RV is a function X : Ω → R such that for each x ∈ R, \{ω ∈ Ω : X(ω) ≤ x\} ∈ F. Such a function is said to be \seqsplit{F−measurable} & & \tn % Row Count 38 (+ 14) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 10 \SetRowColor{LightBackground} \seqsplit{Distribution} Function & \seqsplit{Distribution} function of a random variable X is the function F : R → {[}0, 1{]} given by F(x)=P(X ≤x), x∈R. & & \tn % Row Count 11 (+ 11) % Row 11 \SetRowColor{white} Discrete RV & A RV is said to be discrete if it takes values in some countable subset X = \{x1,x2,...\} of R & & \tn % Row Count 21 (+ 10) % Row 12 \SetRowColor{LightBackground} PMF & PMF of a discrete RV X, is the function f :X→{[}0,1{]} defined by f(x)=P(X =x). It satisfy: & PDF & function f is called the \seqsplit{probability} density function (PDF) of the con- tinuous random variable X \tn % Row Count 31 (+ 10) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 13 \SetRowColor{LightBackground} & 1. set of x s.t. f(x) != 0 is countable & & f(x) = F'(x) \tn % Row Count 4 (+ 4) % Row 14 \SetRowColor{white} & 2. \seqsplit{∑􏰊x∈X} f(x) = 1 & & F(x) = ∫-∞x f(u) du \tn % Row Count 7 (+ 3) % Row 15 \SetRowColor{LightBackground} & 3. f(x) ≥ 0 & & \tn % Row Count 9 (+ 2) % Row 16 \SetRowColor{white} \seqsplit{Independence} & Discrete RV X and Y are indie if the events \{X = x\} \& \{Y =y\} are indie for each(x,y)∈X×Y & The RV X and Y are indie if \{X≤x\} \{Y≤y\} are indie events for each x, y ∈ R & \tn % Row Count 19 (+ 10) % Row 17 \SetRowColor{LightBackground} & P(X,Y) = \seqsplit{P(X=x)P(Y=y)} & & \tn % Row Count 22 (+ 3) % Row 18 \SetRowColor{white} & f(x,y) = f(x)f(y) & f(x,y) = f(x)f(y) F(x,y) v & \tn % Row Count 25 (+ 3) % Row 19 \SetRowColor{LightBackground} & E{[}XY{]} = E{[}X{]}E{[}Y{]} & & \tn % Row Count 27 (+ 2) % Row 20 \SetRowColor{white} \seqsplit{Expectation} & expected value of RV {\emph{X}} on X, & The \seqsplit{expectation} of a \seqsplit{continuous} random variable X with PDF f is given by & \tn % Row Count 35 (+ 8) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 21 \SetRowColor{LightBackground} & E{[}{\emph{X}}{]} = ∑x∈X xf(x) & E{[}{\emph{X}}{]} = ∫x∈X xf(x) dx & \tn % Row Count 3 (+ 3) % Row 22 \SetRowColor{white} & E{[}g(x){]} = ∑x∈X g(x)f(x) & E{[}g(x){]} = ∫x∈X g(x)f(x) dx & \tn % Row Count 6 (+ 3) % Row 23 \SetRowColor{LightBackground} Variance & spread of RV & E{[}({\emph{X}} − E{[}{\emph{X}}{]})\textasciicircum{}2\textasciicircum{}{]} & E{[}{\emph{X}}\textasciicircum{}2\textasciicircum{}{]} - E{[}{\emph{X}}{]}\textasciicircum{}2\textasciicircum{} \tn % Row Count 9 (+ 3) % Row 24 \SetRowColor{white} MGF (uniquely \seqsplit{characterises} \seqsplit{distribution)} & M(t) = E{[}e\textasciicircum{}{\emph{X}}t\textasciicircum{}{]} = ∑x∈X e\textasciicircum{}{\emph{X}}t\textasciicircum{} f(x) & t∈T s.t. t for ∑x∈X e\textasciicircum{}{\emph{X}}t\textasciicircum{} f(x) \textless{} ∞ & \tn % Row Count 14 (+ 5) % Row 25 \SetRowColor{LightBackground} & M(t) = E{[}e\textasciicircum{}{\emph{X}}t\textasciicircum{}{]} = ∫x∈X e\textasciicircum{}{\emph{X}}t\textasciicircum{} f(x) dx & t∈T s.t. t for ∫x∈X e\textasciicircum{}{\emph{X}}t\textasciicircum{} f(x) dx \textless{} ∞ & \tn % Row Count 19 (+ 5) % Row 26 \SetRowColor{white} & M(t1,t2) = E{[}e\textasciicircum{}Xt1+Yt2\textasciicircum{}{]} = ∫z e\textasciicircum{}Xt1+Yt2\textasciicircum{} f(x,y) dxdy (t1,t2)∈T & E{[}X{]} = ∂/∂t1 M(t1,t2) |t1=t2=0 & E{[}XY{]} = ∂\textasciicircum{}2\textasciicircum{}/∂t1∂t2 M(t1,t2) |t1=t2=0 \tn % Row Count 26 (+ 7) % Row 27 \SetRowColor{LightBackground} & E{[}{\emph{X\textasciicircum{}k\textasciicircum{}}}{]} = M\textasciicircum{}k\textasciicircum{}(0) & & \tn % Row Count 28 (+ 2) % Row 28 \SetRowColor{white} Moment & Given a discrete RV {\emph{X}} on X, with PMF f and k ∈ Z\textasciicircum{}+\textasciicircum{}, the k\textasciicircum{}th\textasciicircum{} moment of X is & E{[}X\textasciicircum{}k\textasciicircum{}{]} & \tn % Row Count 37 (+ 9) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 29 \SetRowColor{LightBackground} Central Moment & k\textasciicircum{}th\textasciicircum{} central moment of X is & E{[}({\emph{X}} − E{[}{\emph{X}}{]})\textasciicircum{}k\textasciicircum{}{]} & \tn % Row Count 3 (+ 3) % Row 30 \SetRowColor{white} \seqsplit{Dependence} & Joint \seqsplit{distribution} function F : R\textasciicircum{}2\textasciicircum{} → {[}0,1{]} of X,Y where X and Y are discrete random variables, is given by F(x,y) = \seqsplit{P(X≤x∩Y≤y)} & The joint \seqsplit{distribution} function of X and Y is the function F : R2 → {[}0, 1{]} given by F(x,y)=P(X≤x,Y ≤y) & \tn % Row Count 17 (+ 14) % Row 31 \SetRowColor{LightBackground} & Joint mass function f : R2 → {[}0, 1{]} is given by f(x,y) = P(x∩y) & The random variables are jointly \seqsplit{continuous} with joint PDF f : R2 → {[}0, ∞) if F(x, y) = \seqsplit{∫-∞y∫-∞x} f(u,v) dudv & \tn % Row Count 29 (+ 12) % Row 32 \SetRowColor{white} & & f(x,y) = ∂\textasciicircum{}2\textasciicircum{}/∂x∂y F(x,y) & \tn % Row Count 33 (+ 4) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 33 \SetRowColor{LightBackground} Marginal & f(x) = ∑y∈Y f(x,y) & f(x) = ∫y∈Y f(x,y)dy & F(x) = lim y-\textgreater{}∞ F(x,y) F(x) = \seqsplit{∫-∞x∫-∞∞} f(u,y) dydu \tn % Row Count 7 (+ 7) % Row 34 \SetRowColor{white} & E{[}{\emph{g(x,y)}}{]} = ∑x,y∈{\emph{X}}x{\emph{Y}} g(x,y)f(x,y) & E{[}{\emph{g(x,y)}}{]} = ∫x,y∈{\emph{X}}x{\emph{Y}} g(x,y)f(x,y) dxdy & \tn % Row Count 12 (+ 5) % Row 35 \SetRowColor{LightBackground} \seqsplit{Covariance} & indie =\textgreater{} E{[}XY{]} = E{[}X{]}E{[}Y{]}, Cov = 0 =\textgreater{} ρ = 0 & ρ = 0 =\textgreater{} E{[}XY{]} = E{[}X{]}E{[}Y{]} & \tn % Row Count 17 (+ 5) % Row 36 \SetRowColor{white} & Cov{[}X,Y{]} = E{[}(X − E{[}X{]})(Y − E{[}Y{]}){]} & Cov{[}X,Y{]} = E{[}XY{]} - E{[}X{]}E{[}Y{]} & \tn % Row Count 21 (+ 4) % Row 37 \SetRowColor{LightBackground} \seqsplit{Correlation} & Gives linear \seqsplit{relationship} (+/-). |ρ| close to 1 is strong, close to 0 is weak & special for \seqsplit{bi-variate} normal, indie \textless{}=\textgreater{} \seqsplit{uncorrelated} & \tn % Row Count 29 (+ 8) % Row 38 \SetRowColor{white} & ρ(X,Y)= Cov{[}X,Y{]} / sqrt(􏰗Var{[}X{]}Var{[}Y{]}) & & \tn % Row Count 34 (+ 5) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 39 \SetRowColor{LightBackground} \seqsplit{Conditional} \seqsplit{distribution} & The \seqsplit{conditional} \seqsplit{distribution} function of Y given X, written FY |x(·|x), is defined by & F(y|x) = ∫-∞y f(x,v)/f(x) dv & f(y|x) = f(x,y)/f(x) where f(x) = \seqsplit{∫-∞∞} f(x,y) dy \tn % Row Count 9 (+ 9) % Row 40 \SetRowColor{white} & Fy|x(y|x) = P(Y ≤ y|X = x) & & \tn % Row Count 12 (+ 3) % Row 41 \SetRowColor{LightBackground} & for any x with P(X =x)\textgreater{}0. The \seqsplit{conditional} PMF of Y given X =x is defined by ... when x is s.t. P(X =x)\textgreater{}0 & & \tn % Row Count 23 (+ 11) % Row 42 \SetRowColor{white} & f(y|x) = P(Y = y|X = x) & & \tn % Row Count 26 (+ 3) % Row 43 \SetRowColor{LightBackground} & f(x,y) = \seqsplit{f(x|y)f(y)} or \seqsplit{f(y|x)f(x)} & & \tn % Row Count 30 (+ 4) \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} x{4.1175 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{17.67cm}}{\bf\textcolor{white}{Definitions (cont)}} \tn % Row 44 \SetRowColor{LightBackground} \seqsplit{Conditional} \seqsplit{expectation} & The \seqsplit{conditional} \seqsplit{expectation} of a RV Y, given X = x is E{[}Y|X =x{]} = \seqsplit{􏰏∑y∈Y} yf(y|x) given that the \seqsplit{conditional} PMF is \seqsplit{well-defined} & E{[}h(X)g(Y){]} = E{[}E{[}g(Y)|X{]}h(X){]} = \seqsplit{∫(∫g(Y)f(Y|X)} dx) h(X)f(x) dx & \tn % Row Count 14 (+ 14) % Row 45 \SetRowColor{white} & E{[}Y|X =x{]} = \seqsplit{􏰏∑y∈Y} yf(y|x) & E{[}E{[}Y|X{]}{]} = E{[}Y{]} & E{[}E{[}Y|X{]}g(X){]} = E{[}Yg(X){]} \tn % Row Count 18 (+ 4) % Row 46 \SetRowColor{LightBackground} & E{[}(aX + bY)|Z{]} = aE{[}X|Z{]} + bE{[}Y|Z{]} & & \tn % Row Count 22 (+ 4) % Row 47 \SetRowColor{white} & if X and Y are \seqsplit{independent} & E{[}X|Y{]} = E{[}X{]} & Var{[}X|Y{]} = E{[}X\textasciicircum{}2\textasciicircum{}|Y{]} - E{[}X|Y{]}\textasciicircum{}2\textasciicircum{} \tn % Row Count 26 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{17.67cm}{x{6.3899 cm} x{10.8801 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{17.67cm}}{\bf\textcolor{white}{Theorems}} \tn % Row 0 \SetRowColor{LightBackground} Bayes Theorem & Consider probability space (Ω, F , P) and let A, B ∈ F with P(A), P(B) \textgreater{} 0. Then we have: \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} & P(B|A) = P(A|B)P(B) / P(A) \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} Independence & If X and Y are indie RV and g : X → R, h : Y → R, then the RV g(X) and h(Y ) are also indie \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} Expectations & 1. if X≥0, E{[}X{]}≥0 \tn % Row Count 11 (+ 1) % Row 4 \SetRowColor{LightBackground} & 2. if a, b∈R then E{[}aX+bY{]}=aE{[}X{]}+bE{[}Y{]} \tn % Row Count 13 (+ 2) % Row 5 \SetRowColor{white} & 3. if X = c∈R always, then E{[}X{]}=c. \tn % Row Count 15 (+ 2) % Row 6 \SetRowColor{LightBackground} Variance & 1. For a ∈ R, Var{[}aX{]} = a\textasciicircum{}2\textasciicircum{}Var{[}X{]} \tn % Row Count 17 (+ 2) % Row 7 \SetRowColor{white} & 2. Uncorrelated Var{[}X + Y{]} = Var{[}X{]} + Var{[}Y{]} \tn % Row Count 19 (+ 2) % Row 8 \SetRowColor{LightBackground} Conditional Expectation & Conditional expectations satisfies E{[}E{[}Y|X{]}{]} = E{[}Y{]} assuming all the expectations exist \tn % Row Count 23 (+ 4) % Row 9 \SetRowColor{white} & for any g : R → R, E{[}E{[}Y|X{]}g(X){]} = E{[}Yg(X){]} assuming all expectations exist \tn % Row Count 27 (+ 4) % Row 10 \SetRowColor{LightBackground} Change of variable & If (X1,X2) have joint density f(x,y) on Z, then for (Y1,Y2) = T(X1,X2), with T as described above, the joint density of (Y1,Y2), denoted g is: g(y1,y2)=f(T\textasciicircum{}−1\textasciicircum{}(y1,y2),T\textasciicircum{}−1\textasciicircum{}(y1,y2)) |J(y ,y )| (y1,y2)∈T \tn % Row Count 36 (+ 9) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \end{document}