

ST2334 Cheat Sheet by madsonic via cheatography.com/21194/cs/3988/

Definitions			
Sample Space	The set of all possible outcomes of an experiment is called the sample space and is denoted by Ω .		
Sigma field	A collection of sets F of Ω is called a $\sigma\text{-field}$ if it satisfies the following conditions:		
	1. ∅ ∈ F 2. If A1,,∈ F then U∞1 Ai ∈ F		3. If $A \in F$ then $A^c \in F$
Probability	A probability measure P on (Ω,F) is a function P : F \rightarrow [0, 1] which satisfies:		
	1.P(Ω)=1 and P(\emptyset)=0	2.	
Conditional Probability	Consider probability space (Ω, F, P) and let $A, B \in F$ with $P(B) > 0$. Then the conditional probability that A occurs given B occurs is defined to be: $P(A B) = P(A \cap B) / P(B)$		
Total Probability	A family of sets B1,, Bn is called a partition of Ω if: Wi !=j Bi Bj =Ø and U ∞ 1 Bi = Ω	$P(A) = \sum n1$ $P(A Bi)P(Bi)$	$P(A) = \sum_{i=1}^{n} P(A \cap B_i)$
Independence	Consider probability space (Ω, F, P) and let $A, B \in F$. A and B are independent if $P(A \cap B) = P(A)P(B)$		
	More generally, a family of F-sets A1,,An ($\infty > n \ge 2$) are independent if $P(\cap n1)$	Ai) = ∏ n1 P(Ai)	

By madsonic

cheatography.com/madsonic/

Published 27th April, 2015. Last updated 27th April, 2015. Page 1 of 4. Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

ST2334 Cheat Sheet by madsonic via cheatography.com/21194/cs/3988/

Definitions (cont)			
Random Variable (RV)	A RV is a function $X:\Omega\to R$ such that for each $x\in R$, $\{\omega\in\Omega:X(\omega)\le x\}\in F$. Such a function is said to be F-measurable		
Distribution Function	Distribution function of a random variable X is the function $F: R \to [0, 1]$ given by $F(x) = P(X \le x)$, $x \in R$.		
Discrete RV	A RV is said to be discrete if it takes values in some countable subset $X = \{x1, x2,\}$ of R		
PMF	PMF of a discrete RV X, is the function $f:X\rightarrow [0,1]$ defined by $f(x)=P(X=x)$. It satisfy:	PDF function f is called the probability density function (PDF) of the con-tinuous random variable X	
	1. set of x s.t. $f(x) = 0$ is countable	f(x) = F'(x)	
	2. ∑ x∈X f(x) = 1	$F(x) = \int -\infty x f(u) du$	
	3. $f(x) \ge 0$		
Independence	Discrete RV X and Y are indie if the events $\{X = x\}$ & $\{Y = y\}$ are indie for each $(x,y) \in X \times Y$	The RV X and Y are indie if $\{X \le x\}$ $\{Y \le y\}$ are indie events for each x, $y \in R$	
	P(X,Y) = P(X=x)P(Y=y)		
	f(x,y) = f(x)f(y)	f(x,y) = f(x)f(y) F(x,y) v	
	E[XY] = E[X]E[Y]		
Expectation	expected value of RV X on X,	The expectation of a continuous random variable X with PDF f is given by	
	$E[X] = \sum x \in X \; xf(x)$	$E[X] = \int x \in X \ xf(x) \ dx$	
	$E[g(x)] = \Sigma x \!\in\! \! X \; g(x) f(x)$	$E[g(x)] = \int x \in X \ g(x)f(x) \ dx$	
Variance	spread of RV	$E[(X - E[X^2] - E[X]^2 $ $E[X])^2]$	
MGF (uniquely characterises distribution)	$M(t) = E[e^{Xt}] = \sum x \in X e^{Xt} f(x)$	t∈T s.t. t for $\sum x \in X e^{Xt} f(x) < \infty$	
	$M(t) = E[e^{Xt}] = \int x \in X e^{Xt} f(x) dx$	$t \in T \text{ s.t. t for } \int x \in X e^{Xt} f(x) dx < \infty$	

By madsonic cheatography.com/madsonic/

Published 27th April, 2015. Last updated 27th April, 2015. Page 2 of 4. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com

ST2334 Cheat Sheet

by madsonic via cheatography.com/21194/cs/3988/

Definitions (d	cont)			
	$M(t1,t2) = E[e^{Xt1+Yt2}] = \int z e^{Xt1+Yt2} f(x,y) dxdy (t1,t2) \in T$	$E[X] = \partial/\partial t1 M(t1,t2)$ $ t1=t2=0$	$E[XY] = \frac{\partial^2}{\partial t} \frac{1}{\partial t^2} M(t1,t2) t1=t2=0$	
	$E[X^k] = M^k(0)$			
Moment	Given a discrete RV X on X, with PMF f and k \in Z ⁺ , the k th moment of X is	E[X ^k]		
Central Moment	k th central moment of X is	$E[(X - E[X])^k]$		
Dependence	Joint distribution function $F: R^2 \to [0,1]$ of X,Y where X and Y are discrete random variables, is given by $F(x,y) = P(X \le x \cap Y \le y)$	The joint distribution function of X and Y is the function F : R2 $\to [0,1] \text{ given by } F(x,y) = P(X \le x,Y \le y)$		
	Joint mass function $f: R2 \rightarrow [0, 1]$ is given by $f(x,y) = P(x \cap y)$	The random variables are jointly continuous with joint PDF f : $R2 \to [0,\infty) \text{ if } F(x,y) = \text{\int-∞y} \text{\int-∞y} f(u,v) \text{ dudv}$		
		$f(x,y) = \partial^2/\partial x \partial y F(x,y)$		
Marginal	$f(x) = \sum y \in Y \ f(x,y)$	$f(x) = \int y \in Y f(x,y) dy$	$F(x) = \lim y \to \infty F(x,y) F(x) = \int -\infty x \int -\infty f(u,y) dydu$	
	$E[g(x,y)] = \sum_{x,y} \in XxY g(x,y) f(x,y)$	$E[g(x,y)] = \int x, y \in XxY g(x,y)f(x,y) dxdy$		
Covariance	indie => $E[XY] = E[X]E[Y]$, $Cov = 0 => \rho = 0$	$\rho = 0 \Rightarrow E[XY] = E[X]E[Y]$		
	Cov[X,Y] = E[(X - E[X])(Y - E[Y])]	Cov[X,Y] = E[XY] - E[XY]	Cov[X,Y] = E[XY] - E[X]E[Y]	
Correlation	Gives linear relationship (+/-). $ \rho $ close to 1 is strong, close to 0 is weak	special for bi-variate normal, indie <=> uncorrelated		
	$\rho(X,Y) = Cov[X,Y] / sqrt(Var[X]Var[Y])$			
Conditional distribution	The conditional distribution function of Y given X, written FY $ x(\cdot x),$ is defined by	$F(y x) = \int -\infty y$ $f(x,v)/f(x) dv$	$\begin{array}{l} f(y x) = f(x,y)/f(x) \text{ where } f(x) = \int \!\!\!\! -\infty \infty \\ f(x,y) \ dy \end{array}$	

By madsonic

cheatography.com/madsonic/

Published 27th April, 2015. Last updated 27th April, 2015. Page 3 of 4. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!
http://crosswordcheats.com

ST2334 Cheat Sheet by madsonic via cheatography.com/21194/cs/3988/

Definitions (cont)			
$Fy x(y x) = P(Y \le y X = x)$			
for any x with $P(X = x) > 0$. The conditional PMF of Y given $X = x$ is defined by when x is s.t. $P(X = x) > 0$			
f(y x) = P(Y = y X = x)			
f(x,y) = f(x y)f(y) or $f(y x)f(x)$			
The conditional expectation of a RV Y, given $X = x$ is $E[Y X = x] = \sum y \in Y$ yf(y x) given that the conditional PMF is well-defined	$\begin{aligned} & E[h(X)g(Y)] = E[E[g(Y) X]h(X)] = \\ & \int (\int g(Y)f(Y X) \; dx) \; h(X)f(x) \; dx \end{aligned}$		
$E[Y X = x] = \sum y \in Y \ yf(y x)$	E[E[Y X]] = E[Y]	E[E[Y X]g(X)] = E[Yg(X)]	
E[(aX + bY) Z] = aE[X Z] + bE[Y Z]			
if X and Y are independent	E[X Y] = E[X]	$Var[X Y] = E[X^2 Y] - E[X Y]^2$	
	$Fy x(y x) = P(Y \le y X = x)$ for any x with $P(X = x) > 0$. The conditional PMF of Y given X = x is defined by when x is s. $f(y x) = P(Y = y X = x)$ $f(x,y) = f(x y)f(y) \text{ or } f(y x)f(x)$ The conditional expectation of a RV Y, given X = x is $E[Y X = x] = \sum y \in Y \text{ yf}(y x)$ given that the conditional PMF is well-defined $E[Y X = x] = \sum y \in Y \text{ yf}(y x)$ $E[(aX + bY) Z] = aE[X Z] + bE[Y Z]$	$Fy x(y x) = P(Y \le y X = x)$ for any x with $P(X = x) > 0$. The conditional PMF of Y given X = x is defined by when x is s.t. $P(X = x) > 0$ f(y x) = $P(Y = y X = x)$ f(x,y) = $f(x y)f(y)$ or $f(y x)f(x)$ The conditional expectation of a RV Y, given X = x is $E[Y X = x] = \sum y \in Y$ yf(y x) given $E[h(X)g(Y)] = E[h(X)g(Y)] = E[Y X = x] = \sum y \in Y$ yf(y x) $E[Y X = x] = \sum y \in Y$ yf(y x) $E[Y X = x] = \sum y \in Y$ yf(y x) $E[Y X] = E[Y]$ $E[X X] = E[Y X] = E[Y X]$	

Theorems	
Bayes Theorem	Consider probability space (Ω, F, P) and let A, B \in F with P(A), P(B) > 0. Then we have:
	P(B A) = P(A B)P(B) / P(A)
Independence	If X and Y are indie RV and g : X \rightarrow R, h : Y \rightarrow R, then the RV g(X) and h(Y) are also indie
Expectations	1. if X≥0, E[X]≥0
	2. if a, b∈R then E[aX+bY]=aE[X]+bE[Y]
	3. if $X = c$ ∈R always, then $E[X]=c$.
Variance	1. For $a \in R$, $Var[aX] = a^2Var[X]$
	2. Uncorrelated $Var[X + Y] = Var[X] + Var[Y]$
Conditional Expectation	Conditional expectations satisfies E[E[Y X]] = E[Y] assuming all the expectations exist
	for any $g: R \to R$, $E[E[Y X]g(X)] = E[Yg(X)]$ assuming all expectations exist
Change of variable	If $(X1,X2)$ have joint density $f(x,y)$ on Z , then for $(Y1,Y2) = T(X1,X2)$, with T as described above, the joint density of $(Y1,Y2)$, denoted g is: $g(y1,y2)=f(T^{-1}(y1,y2),T^{-1}(y1,y2))$ $J(y,y)$ $J(y$

By madsonic

cheatography.com/madsonic/

Published 27th April, 2015. Last updated 27th April, 2015.

Page 4 of 4.

Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords!

http://crosswordcheats.com