ST2334 Cheat Sheet

Cheatography

by madsonic via cheatography.com/21194/cs/3988/

Definitions			
Sample Space	The set of all possible outcomes of an experiment is called the sample space and is	denoted by Ω.	
Sigma field	A collection of sets F of Ω is called a $\sigma\text{-field}$ if it satisfies the following conditions:		
	1. \emptyset ∈ F 2. If A1,, ∈ F then U∞1 Ai ∈ F		3. If $A \in F$ then $A^{c} \in F$
Probability	A probability measure P on $(\Omega,F$) is a function P : F \rightarrow [0, 1] which satisfies:		
	1.P(Ω)=1 and P(\emptyset)=0	2.	
Conditional Probability	Consider probability space (Ω , F, P) and let A, B \in F with P(B) > 0. Then the conditional probability that A occurs given B occurs is defined to be: P(A B) = P(A \cap B) / P(B)		
Total Probability	A family of sets B1,, Bn is called a partition of Ω if: $\forall i \: != j \: Bi \: \cap Bj \: = \: \emptyset$ and $\: U \! \infty 1 \: Bi \: = \: \Omega$	P(A) = ∑n1 P(A Bi)P(Bi)	P(A) = ∑n1 P(A∩Bi)
Independence	Consider probability space (Ω , F , P) and let A, B \in F . A and B are independent if P(A \cap B) = P(A)P(B)		
	More generally, a family of F-sets A1,,An ($\infty > n \ge 2$) are independent if P($\cap n1$	Ai) = ∏ n1 P(Ai)	

By madsonic

cheatography.com/madsonic/

Published 27th April, 2015. Last updated 27th April, 2015. Page 1 of 4.

Cheatography

ST2334 Cheat Sheet by madsonic via cheatography.com/21194/cs/3988/

Definitions (cont)			
Random Variable (RV)	A RV is a function X : $\Omega \to R$ such that for each $x \in R$, { $\omega \in \Omega : X(\omega) \le x$ } $\in F$. Such a function is said to be F-measurable		
Distribution Function	Distribution function of a random variable X is the function F : R \rightarrow [0, 1] given by F(x)=P(X $\leq x$), x \in R.		
Discrete RV	A RV is said to be discrete if it takes values in some countable subset $X = \{x1, x2,\}$ of R		
PMF	PMF of a discrete RV X, is the function $f : X \rightarrow [0,1]$ defined by $f(x)=P(X = x)$. It satisfy:	PDF function f is called the probability density function (PDF) of the con- tinuous random variable X	
	1. set of x s.t. $f(x) = 0$ is countable	f(x) = F'(x)	
	2. ∑ x∈X f(x) = 1	F(x) = ∫-∞x f(u) du	
	3. $f(x) \ge 0$		
Independence	Discrete RV X and Y are indie if the events {X = x} & {Y =y} are indie for each(x,y) \in X×Y	The RV X and Y are indie if $\{X{\le}x\}$ $\{Y{\le}y\}$ are indie events for each x, $y\in R$	
	$P(X,Y)=P(X{=}x)P(Y{=}y)$		
	f(x,y) = f(x)f(y)	f(x,y) = f(x)f(y) F(x,y) v	
	E[XY] = E[X]E[Y]		
Expectation	expected value of RV X on X,	The expectation of a continuous random variable X with PDF f is given by	
	$E[X] = \sum x \in X x f(x)$	$E[X] = \int x \in X xf(x) dx$	
	$E[g(x)] = \sum x \in X \ g(x) f(x)$	$E[g(x)] = \int x \in X g(x)f(x) dx$	
Variance	spread of RV	$E[(X - E[X^2] - E[X]^2]$ $E[X])^2]$	
MGF (uniquely characterises distribution)	$M(t) = E[e^{X}t] = \sum x \in X \; e^{Xt} \; f(x)$	t∈T s.t. t for $\sum x \in X e^{Xt} f(x) < \infty$	
	$M(t) = E[e^{Xt}] = \int x {\in} X \; e^{Xt} \; f(x) \; d x$	t∈T s.t. t for $x \in X e^{Xt} f(x) dx < \infty$	

By madsonic

cheatography.com/madsonic/

Published 27th April, 2015. Last updated 27th April, 2015. Page 2 of 4.

ST2334 Cheat Sheet

by madsonic via cheatography.com/21194/cs/3988/

Definitions (cont)		
	M(t1,t2) = E[e ^{Xt1+Yt2}] = $\int z e^{Xt1+Yt2} f(x,y) dxdy (t1,t2) ∈ T$	E[X] = ∂/∂t1 M(t1,t2) t1=t2=0	$E[XY] = \partial^2/\partial t1\partial t2 \ M(t1,t2) \ t1=t2=0$
	$E[X^{k_{j}}] = M^{k_{j}}(0)$		
Moment	Given a discrete RV X on X, with PMF f and $k \in \mathbb{Z}^{k}$, the k^{th} moment of X is	E[X ^k]	
Central Moment	k th central moment of X is	$E[(X - E[X])^k]$	
Dependence	Joint distribution function $F : \mathbb{R}^2 \to [0,1]$ of X,Y where X and Y are discrete random variables, is given by $F(x,y) = P(X \le x \cap Y \le y)$	The joint distribution function of X and Y is the function F : R2 \rightarrow [0, 1] given by F(x,y)=P(X \le x, Y \le y)	
	Joint mass function $f:R2 \rightarrow [0,1]$ is given by $f(x,y)$ = $P(x \cap y)$	The random variables are jointly continuous with joint PDF f : R2 \rightarrow [0, ∞) if F(x, y) = $\int -\infty y \int -\infty x f(u,v) dudv$	
		$f(x,y)=\partial^2/\partial x\partial y\ F(x,y)$	
Marginal	$f(x) = \sum y \in Y f(x,y)$	f(x) = ∫y∈Y f(x,y)dy	$F(x) = \lim y$ ->∞ $F(x,y) F(x) = \int$ -∞x \int -∞∞ $f(u,y) dydu$
	$E[g(x,y)] = \sum x, y \in X \times Y g(x,y) f(x,y) \qquad \qquad E[g(x,y)] = \int x, y \in X \times Y g(x,y) f(x,y) dx dy$		g(x,y)f(x,y) dxdy
Covariance	indie => $E[XY] = E[X]E[Y]$, Cov = 0 => ρ = 0	$\rho = 0 \Rightarrow E[XY] = E[X]E[Y]$	
	Cov[X,Y] = E[(X - E[X])(Y - E[Y])]	Cov[X,Y] = E[XY] - E[X]E[Y]	
Correlation	Gives linear relationship (+/-). $ \rho $ close to 1 is strong, close to 0 is weak	special for bi-variate normal, indie <=> uncorrelated	
	ρ(X,Y)= Cov[X,Y] / sqrt(Var[X]Var[Y])		
Conditional distribution	The conditional distribution function of Y given X, written FY $ x(\cdot x),$ is defined by	$\begin{array}{l} F(y x) = \int -\infty y \\ f(x,v)/f(x) \ dv \end{array}$	$f(y x) = f(x,y)/f(x)$ where $f(x) = \int -\infty\infty$ $f(x,y) \; dy$

C

By madsonic

Cheatography

cheatography.com/madsonic/

Published 27th April, 2015. Last updated 27th April, 2015. Page 3 of 4.

ST2334 Cheat Sheet

Cheatography

by madsonic via cheatography.com/21194/cs/3988/

Definitions (co	nt)			
	$Fy x(y x) = P(Y \le y X = x)$			
	for any x with $P(X = x) > 0$. The conditional PMF of Y given X =x is defined by when x is	s.t. P(X =x)>0		
	f(y x) = P(Y = y X = x)			
	f(x,y) = f(x y)f(y) or f(y x)f(x)			
Conditional expectation	The conditional expectation of a RV Y, given $X = x$ is $E[Y X = x] = \sum y \in Y$ yf(y x) given that the conditional PMF is well-defined		$\begin{split} E[h(X)g(Y)] &= E[E[g(Y) X]h(X)] = \\ \int (\int g(Y)f(Y X) \; dx) \; h(X)f(x) \; dx \end{split}$	
	$E[Y X = x] = \sum y \in Y \ yf(y x)$	E[E[Y X]] = E[Y]	E[E[Y X]g(X)] = E[Yg(X)]	
	E[(aX + bY) Z] = aE[X Z] + bE[Y Z]			
	if X and Y are independent	E[X Y] = E[X]	Var[X Y] = E[X ² Y] - E[X Y] ²	

Theorems	
Bayes Theorem	Consider probability space (Ω , F , P) and let A, B \in F with P(A), P(B) > 0. Then we have:
	P(B A) = P(A B)P(B) / P(A)
Independence	If X and Y are indie RV and g : X \rightarrow R, h : Y \rightarrow R, then the RV g(X) and h(Y) are also indie
Expectations	1. if X≥0, E[X]≥0
	2. if a, b∈R then E[aX+bY]=aE[X]+bE[Y]
	3. if $X = c \in \mathbb{R}$ always, then $E[X]=c$.
Variance	1. For $a \in R$, $Var[aX] = a^2 Var[X]$
	2. Uncorrelated Var[X + Y] = Var[X] + Var[Y]
Conditional Expectation	Conditional expectations satisfies E[E[Y X]] = E[Y] assuming all the expectations exist
	for any g : R \rightarrow R, E[E[Y X]g(X)] = E[Yg(X)] assuming all expectations exist
Change of variable	If (X1,X2) have joint density $f(x,y)$ on Z, then for (Y1,Y2) = T(X1,X2), with T as described above, the joint density of (Y1,Y2), denoted g is: $g(y1,y2)=f(T^{-1}(y1,y2),T^{-1}(y1,y2)) J(y,y) (y1,y2) \in T$

By madsonic

cheatography.com/madsonic/

Published 27th April, 2015. Last updated 27th April, 2015. Page 4 of 4.