
CUDA Programming Cheat Sheet
by m_amendola via cheatography.com/165228/cs/35194/

Cuda KernelsCuda Kernels

A CUDA Kernel function is defined using the __global__ keyword.

A Kernel is executed N times in parallel by N different threads on the
device

Each thread has a unique ID stored in the built-in threadIdx variable,
a struct with components x,y,z.

Each thread block has a unique ID stored in the built-in blockIdx
variable, a struct with components x,y,z.

Kernel ConfigurationKernel Configuration

Kernel
Execution
Config‐
uration

kernelFunction<<<num_blocks, num_threads>>
>(params)

num_blocks The number of thread blocks along each dimension of the grid.

num_th‐
reads

The number of threads along each dimension of the thread block

CUDA Thread OrganizationCUDA Thread Organization

Thread are grouped in blocks and can be organized in 1 to 3 dimens‐
ions.

Blocks are grouped into grids which can be organized in 1 to 3
dimensions.

Blocks are executed independently.

1D Grid of 1D Blocks1D Grid of 1D Blocks

int index = blockIdx.x * blockDim.x + threadIdx.x
;

1D Grid of 3D Blocks1D Grid of 3D Blocks

int index = blockIdx.x blockDim.x blockDim.y bl
ockDim.z + threadIdx.z blockDim.y blockDim.x +
threadIdx.y blockDim.x + threadIdx.x;

2D Grid of 2D Blocks applied on a Matrix2D Grid of 2D Blocks applied on a Matrix

The index of each thread is identified by two coordinates i and j.
We can find i applying the rule of 1D Grid of 1D Blocks over the x
axis:
int i = blockIdx.x * blockDim.x + threadIdx.x;
And we can find j applying the rule of 1D Grid of 1D Blocks over the y
axis:
int j = blockIdx.y * blockDim.y + threadIdx.y;
Thus, knowing that a row in the grid is large GridDim.x times
BlockDim.x, we can calculate the index:
int index = j gridDim.x blockDim.x +i;

By m_amendolam_amendola
cheatography.com/m-
amendola/

Published 22nd July, 2023.
Last updated 3rd November, 2022.
Page 1 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/m-amendola/
http://www.cheatography.com/m-amendola/cheat-sheets/cuda-programming
https://cheatography.com/uploads/m-amendola_1667466962_Immagine%202022-11-03%20101315.png
https://cheatography.com/uploads/m-amendola_1667467096_2.png
https://cheatography.com/uploads/m-amendola_1667468966_2D.png
http://www.cheatography.com/m-amendola/
https://readable.com

CUDA Programming Cheat Sheet
by m_amendola via cheatography.com/165228/cs/35194/

CUDA EventsCUDA Events

Declaring a
Cuda Event

cudaEvent_t event;

Allocating the
event

cudaEventCreate(&event);

Recording the
Event.

cudaEventRecord(event);

Synchronizing
the event

cudaEventSynchronize(event);

Find elapsed
time between
two events

cudaEventElapsedTime(&elapsed,
 a, b);

Free event
variables

cudaEventDestroy(event);

CUDA StreamsCUDA Streams

GPU operations on CUDA use execution queues called streams.

Operations pushed in a stream are executed according to a FIFO
policy.

There is a default Stream, called stream 0.

Operations pushed in a non-default stream will be executed after all
operations on default stream are emptied.

Operations assigned to default stream introduce implicit synchroni‐
zation barriers among other streams.

CUDA Streams APICUDA Streams API

Create a stream cudaStreamCreate(stream1);

Deallocate a stream cudaStreamDestroy(stream)

CUDA Streams API (cont)CUDA Streams API (cont)

Block host until all
operations on a stream
are completed.

cudaStreamSynchronize(st
ream);

We can use stream to obtain the concurrent execution of the same
kernel or different kernels.

Synchronization operationsSynchronization operations

Explicit Synchronization Implicit Synchr‐
onization

cudaDeviceSynchronize() blocks host code until
all operations on device are completed

Operations
assigned to
default stream

cudaStreamWaitEvent(stream, event) blocks all
operations assigned to a stream until event is
reached.

Memory Alloca‐
tions on device

 Settings
operations on
device

 Page-locked
memory alloca‐
tions

By m_amendolam_amendola
cheatography.com/m-
amendola/

Published 22nd July, 2023.
Last updated 3rd November, 2022.
Page 2 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/m-amendola/
http://www.cheatography.com/m-amendola/cheat-sheets/cuda-programming
http://www.cheatography.com/m-amendola/
https://readable.com

CUDA Programming Cheat Sheet
by m_amendola via cheatography.com/165228/cs/35194/

CUDA APICUDA API

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

Memory WorkflowMemory Workflow

First we allocate and "build" the input on the hosthost.
Then we allocate dynamic memory on the devicedevice, obtaining pointers
to the allocated memory areas.
Finally, we initializeinitialize the memory on the device and we copycopy the
memory from the host to the device.
At the end of the computation, we may want to copy the memory from
the device to the host.

Copy operation is blocking.

Memory Allocation API FunctionsMemory Allocation API Functions

Dynamic
memory
allocation

cudaMalloc ((void **) &udev, N*sizeof(double
));

u_dev is
the
pointer
to the
allocated
variable

Memory
Initializ‐
ation on
device

cudaMemset(void *devPtr, int val, size_t coun
t;

devPtr is
a pointer
to the
device
address
space.
The
function
fills the
first
count
bytes of
the
memory
area
with the
constant
byte
value
val.

Memory Allocation API Functions (cont)Memory Allocation API Functions (cont)

Copying
data
from
host to
device

cudaMemCpy(void dst, void src, size_t size, cudaMemcpyHostToDe
vice);

Copying
data
from
device
to host

cudaMemCpy(void dst, void src, size_t size, cudaMemcpyDeviceToHost);

After 4.0, CUDA supports Unified Virtual AddressingUnified Virtual Addressing meaning that
the systems itself knows where the buffer is allocated. The direction
parameter must be set to cudaMemcpyDefaultcudaMemcpyDefault .

Global MemoryGlobal Memory

Declaring a static
variable

__device__ type variable_name;

Declaring a dynamic
variable

cudaMalloc((void **) &ptr, size
);

Deallocating a
dynamic variable

cudaFree(ptr)

By m_amendolam_amendola
cheatography.com/m-
amendola/

Published 22nd July, 2023.
Last updated 3rd November, 2022.
Page 3 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/m-amendola/
http://www.cheatography.com/m-amendola/cheat-sheets/cuda-programming
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
http://www.cheatography.com/m-amendola/
https://readable.com

CUDA Programming Cheat Sheet
by m_amendola via cheatography.com/165228/cs/35194/

Global Memory (cont)Global Memory (cont)

Allocating
an
aligned
2D buffer
where
elements
are
padded
so that
each row
is aligned

cudaMallocPitch(&ptr, &pitch, width*sizeof(float)
, height)

cudaMallocPitch returns an integer pitch that can be used to access
row element with stride access. For example:
float ∗row = devPtr + r ∗ pitch;

Shared MemoryShared Memory

Static variable declar‐
ation inside the kernel.

__shared__ type shmem[SIZE];

Dynamic variable
allocation outside the
kernel

extern __shared__ type *shmem;

Constant memoryConstant memory

Declaring
a static
variable

__constant__ type variable_name;

Copy
memory
from host
to
device.

cudaMemcpyToSymbol(variable_name, &host_src, sizeof(type), cudaMemcpyH
ostToDevice);

We cannot declare a dynamic variable on the costant memory

Texture MemoryTexture Memory

Managing texture memory

Allocate
global
memory
on device

cudaMalloc(&M, memsize)

Create a
texture
reference.

texture<datatype, dim> MtextureRef;

Create a
channel
descriptor

cudaChannelFormatDesc Mdesc = cudaCreateChannelDesc<da
tatype>();

Bind the
texture
reference
to
memory.

cudaBindTexture(0, MtextureRef, M, Mdesc)

Unbind at
the end.

cudaUnbindTexture(MTextureRef);

In order to
access
the
texture
memory,
we can
use the
texture
reference
Mtextu‐
reRef.*

text1Dfetch(MtextureRef, address);

Accessing
2D cuda
array.

text2Dfetch(MtextureRef, address);

Accessing
3D cuda
array.

text3Dfetch(MtextureRef, address);

By m_amendolam_amendola
cheatography.com/m-
amendola/

Published 22nd July, 2023.
Last updated 3rd November, 2022.
Page 4 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/m-amendola/
http://www.cheatography.com/m-amendola/cheat-sheets/cuda-programming
http://www.cheatography.com/m-amendola/
https://readable.com

CUDA Programming Cheat Sheet
by m_amendola via cheatography.com/165228/cs/35194/

Asynchronous Data TransfersAsynchronous Data Transfers

Allocates
page-l‐
ocked
memory
on the
host.

cudaMallocHost(buffer, size)

Frees
page-l‐
ocked
memory.

cudaFreeHost(buffer)

Registers
an
existing
host
memory
range for
use by
CUDA.

cudaHostRegister()

Unregi‐
sters a
memory
range that
was
registered
with
cudaHo‐
stRegi‐
ster.

cudaHostUnregister()

Copies
data
between
host and
device.

cudaMemcpyAsync(dest_buffer, src_buffer, dest_size, src_size, direction
,stream)

These operations must be queued into a non-default stream.

Page-locked MemoryPage-locked Memory

Pageable memoryPageable memory is memory which is allowed to be paged in or
paged out whereas page-locked memorypage-locked memory is memory not allowed to
be paged in or paged out.
Page out is moving data from RAM to HDD, while page in means
moving data from HDD to RAM. These operations occurs when the
main memory does not have enough free space.

Source: https://leimao.github.io/blog/Page-Locked-Host-Memory-‐
Data-Transfer/

Error HandlingError Handling

All CUDA API functions returns an error code of type cudaError.

The constant cudaSuccess means no error.

cudaGetLastError return the status of the internal error variable.
Calling this function resets the internal error to cudaSuccess.

Macro for Error HandlingMacro for Error Handling

#define CUDA_CHECK(X) {\
cudaError_t _m_cudaStat = X;\
if(cudaSuccess != _m_cudaStat) {\
fprintf(stderr,"\nCUDA_ERROR: %s in file %s
line %d\n",\
cudaGetErrorString(_m_cudaStat), __FILE__,
__LINE__);\
exit(1);\
} }
...
CUDA_CHECK(cudaMemcpy(d_buf, h_buf, buffSize,
cudaMemcpyHostToDevice));

By m_amendolam_amendola
cheatography.com/m-
amendola/

Published 22nd July, 2023.
Last updated 3rd November, 2022.
Page 5 of 5.

Sponsored by Readable.comReadable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/m-amendola/
http://www.cheatography.com/m-amendola/cheat-sheets/cuda-programming
https://leimao.github.io/blog/Page-Locked-Host-Memory-Data-Transfer/
http://www.cheatography.com/m-amendola/
https://readable.com

	CUDA Programming Cheat Sheet - Page 1
	Cuda Kernels
	1D Grid of 1D Blocks
	Kernel Configuration
	1D Grid of 3D Blocks
	CUDA Thread Organization
	2D Grid of 2D Blocks applied on a Matrix

	CUDA Programming Cheat Sheet - Page 2
	CUDA Events
	Synchronization operations
	CUDA Streams
	CUDA Streams API

	CUDA Programming Cheat Sheet - Page 3
	CUDA API
	Memory Workflow
	Memory Allocation API Functions
	Global Memory

	CUDA Programming Cheat Sheet - Page 4
	Texture Memory
	Shared Memory
	Constant memory

	CUDA Programming Cheat Sheet - Page 5
	Asynchronous Data Transfers
	Error Handling
	Macro for Error Handling
	Page-locked Memory

