CUDA Programming Cheat Sheet
by m_amendola via cheatography.com/165228/cs/35194/

Cheatography

Cuda Kemels

1D Grid of 1D Blocks

A CUDA Kernel function is defined using the __global__ keyword. .
1D Grid of 1D Blocks

A Kernel is executed N times in parallel by N different threads on the
device

Each thread has a unique ID stored in the built-in thread/dx variable, Block 0 Block 1 Block 2
a struct with components x,y,z.

Each thread block has a unique ID stored in the built-in blockldx
variable, a struct with components x,y,z.

Kernel Configuration int index blockIdx.x * blockDim.x + thread Idx.x
Kernel kernel Fun cti on< <<n um_ blocks, num th rea ds> >
Execution > (params)
. 1D Grid of 3D Blocks
Config-
uration

1D Grid of 3D Blocks

num_blocks The number of thread blocks along each dimension of the grid.

num_th- The number of threads along each dimension of the thread block

reads _~ [Blocko_— >

OO0 R0 DO R0

CUDA Thread Organization

Thread are grouped in blocks and can be organized in 1 to 3 dimens-

ions.

Blocks are grouped into grids which can be organized in 1 to 3
dimensions.

int index

blockIdx.x blockDim.x blockDim.y bl
Blocks are executed independently. ockDim.z + thread Idx.z blockDim.y blockDim.x +

thread Idx.y blockDim.x + thread Idx.x;

2D Grid of 2D Blocks applied on a Matrix

Matrixwidth

gridbim.x * blockDim.x

The index of each thread is identified by two coordinates i and j.

We can find i applying the rule of 1D Grid of 1D Blocks over the x
axis:

int i = blockIdx.x * blockDim.x + thread Idx.x;

And we can find j applying the rule of 1D Grid of 1D Blocks over the y
axis:

int j = blockIdx.y * blockDim.y + thread Idx.y;
Thus, knowing that a row in the grid is large GridDim.x times
BlockDim.x, we can calculate the index:

int index = j gridDim.x DblockDim.x +i;

By m_amendola Published 22nd July, 2023. Sponsored by ApolloPad.com
cheatography.com/m- Last updated 3rd November, 2022. Everyone has a novel in them. Finish
amendola/ Page 1 of 5. Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/m-amendola/
http://www.cheatography.com/m-amendola/cheat-sheets/cuda-programming
https://cheatography.com/uploads/m-amendola_1667466962_Immagine%202022-11-03%20101315.png
https://cheatography.com/uploads/m-amendola_1667467096_2.png
https://cheatography.com/uploads/m-amendola_1667468966_2D.png
http://www.cheatography.com/m-amendola/
https://apollopad.com

Cheatography

CUDA Events

Declaring a cudaEv ent t event;

Cuda Event

Allocating the cudaEv ent Cre ate (& event);
event

Recording the cudaEv ent Rec ord (ev ent);

Event.

Synchronizing cudaEv ent Syn chr oni ze(event);
the event

Find elapsed cudaEv ent Ela pse dTi me(&e lapsed,
time between a, b);

two events

Free event cudaEv ent Des tro y(e vent);
variables

CUDA Streams

GPU operations on CUDA use execution queues called streams.

Operations pushed in a stream are executed according to a FIFO
policy.
There is a default Stream, called stream 0.

Operations pushed in a non-default stream will be executed after all
operations on default stream are emptied.

Operations assigned to default stream introduce implicit synchroni-
zation barriers among other streams.

CUDA Streams API

Create a stream cudaSt rea mCr eat e(s treaml);

Deallocate a stream cudaSt rea mDe str oy(stream)

By m_amendola
cheatography.com/m-

amendola/ Page 2 of 5.

Published 22nd July, 2023.
Last updated 3rd November, 2022.

CUDA Programming Cheat Sheet
by m_amendola via cheatography.com/165228/cs/35194/

CUDA Streams API (cont)

Block host until all cudaSt rea mSy nch ron ize (st

operations on a stream ream) ;

are completed.

We can use stream to obtain the concurrent execution of the same
kernel or different kernels.

Synchronization operations

Explicit Synchronization Implicit Synchr-

onization
cudaDeviceSynchronize() blocks host code until ~ Operations
all operations on device are completed assigned to

default stream

cudaStreamWaitEvent(stream, event) blocks all ~ Memory Alloca-

operations assigned to a stream until event is tions on device

reached.

Settings
operations on
device

Page-locked
memory alloca-
tions

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/m-amendola/
http://www.cheatography.com/m-amendola/cheat-sheets/cuda-programming
http://www.cheatography.com/m-amendola/
https://apollopad.com

CUDA Programming Cheat Sheet
by m_amendola via cheatography.com/165228/cs/35194/

Cheatography

CUDA API Memory Allocation API Functions (cont)
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html Copying cudaMe mCp y(void dst, void src, size t size
data vice) ;

Memory Workflow from

First we allocate and "build" the input on the host. O

Then we allocate dynamic memory on the device, obtaining pointers e
to the allocated memory areas.

Finally, we initialize the memory on the device and we copy the
memory from the host to the device.

At the end of the computation, we may want to copy the memory from

the device to the host.

Copy operation is blocking.

Memory Allocation API Functions

Dynamic cudaMalloc ((void **) gudev, N*size of(dou ble u_devis

memory)) the
allocation pointer
to the

Copﬁ”@catsgdaMe mCp y(void dst, void src, size t size
datg variable

Memory cudaMe mse t(void *devPtr, int val, size t coufromdevPtris

Initializ- t; deviaepointer
ation on to hotst the
device

Aﬂerdfﬁ',CEUDA supports Unified Virtual Addressing meaning that
the s?gper%sssitself knows where the buffer is allocated. The direction
parar%%%g?must be set to cudaMemcpyDefault.

e

Global Memory
Declﬂt;ié'}g a static __device type variab le name;
varia beu nt
Decl@;}[@a)dynamic cudaMa llo c((void **) &ptr, size
variafplg) ;
Dealf@@é‘ﬁﬂ@’a cudaFr ee (ptr)
dynafiR@variable
Wit the
constant
byte
value
val.
By m_amendola Published 22nd July, 2023. Sponsored by ApolloPad.com
cheatography.com/m- Last updated 3rd November, 2022. Everyone has a novel in them. Finish
amendola/ Page 3 of 5. Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/m-amendola/
http://www.cheatography.com/m-amendola/cheat-sheets/cuda-programming
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
http://www.cheatography.com/m-amendola/
https://apollopad.com

CUDA Programming Cheat Sheet
by m_amendola via cheatography.com/165228/cs/35194/

Global Memory (cont) Texture Memory

Allocating cudaMa 1lo cPi tch (&ptr, &p itch, width* siz Mahaginy texture memory

Cheatography

an , height) Allocate cudaMa 1lo c (&M, memsize)
aligned global
2D buffer memory
where on device
elements)
Create a textur e<d ata type, dim> Mtextu reRef;
are
texture
padded
reference.
so that
each row Create a cudaCh ann elF orm atDesc Mdesc = cudaCr ec
is aligned channel tat ype >();
descriptor
cudaMallocPitch returns an integer pitch that can be used to access)
. . Bind the cudaBi ndT ext ure (0, Mtextu reRef, M, Mdes
row element with stride access. For example:
) texture
float *row = devPtr + r *x pitch;
reference
to
Shared Memory
memory.

Static variable declar- shared type shmem[SIZE]; .)
— — P [] Unbind at cudaUn bin dTe xtu re(MTe xtu reRef);

ation inside the kernel.

the end.
Dynamic variable extern _shared type *shmem; Inorderto textlD fet ch(Mte xtu reRef, address);
allocation outside the access
kernel the
texture
Declaring ~ cons tant type variab le name; we can
a static use the
variable texture
Copy cudaMe mcp yTo Sym bol (va ria ble name, &h oé%fei%rlc@, sizeof (type), cudaMe mcp yH
memory o stT oDe vice); Miextu-
from host reRer*
to Accessing text2D fet ch(Mte xtu reRef, address);
device. 2D cuda
array.

We cannot declare a dynamic variable on the costant memory

Accessing text3D fet ch(Mte xtu reRef, address);

3D cuda

array.
By m_amendola Published 22nd July, 2023. Sponsored by ApolloPad.com
cheatography.com/m- Last updated 3rd November, 2022. Everyone has a novel in them. Finish
amendola/ Page 4 of 5. Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/m-amendola/
http://www.cheatography.com/m-amendola/cheat-sheets/cuda-programming
http://www.cheatography.com/m-amendola/
https://apollopad.com

Cheatography

Asynchronous Data Transfers

CUDA Programming Cheat Sheet
by m_amendola via cheatography.com/165228/cs/35194/

Error Handling

Allocates cudaMa 1lo cHo st (buffer, size) All CUDA API functions returns an error code of type cudaError.
page-I- The constant cudaSuccess means no error.
ocked) .
cudaGetLastErrorreturn the status of the internal error variable.
memo
. Calling this function resets the internal error to cudaSuccess.
on the
host. .
Macro for Error Handling
Frees cudaFr eeH ost (bu ffer)
#define CUDA CHECK (X) {\
page-I- -
ocked cudaEr ror t m cud aStat = X;\
memory if (cud aSu ccess != m cud aStat) {\
. fprint f(s tde rr, " \nC UDA ERROR: %s in file %s
Registers cudaHo stR egi ster () -
an line %d\n",\
existing cudaGe tEr ror Str ing (. m cu daS tat), _ FILE ,
host _ LINE _);\
memory exit (1);\
range for b
use by
CUDA. CUDA C HECK(cudaMe mcp y(d buf, h buf, buffSize,
Unregi- cudaHo stU nre gis ter() cudaMe mcp yHo stT oDe vice));
sters a
memory
range that
was
registered
with
cudaHo-
stRegi-
ster.
Copies cudaMe mcp yAs ync (de st buffer, src bu ffer, dest size, src size, direct ion
data , st ream)
between
host and
device.

These operations must be queued into a non-default stream.

Page-locked Memory

Pageable memory is memory which is allowed to be paged in or
paged out whereas page-locked memory is memory not allowed to
be paged in or paged out.

Page outis moving data from RAM to HDD, while page in means
moving data from HDD to RAM. These operations occurs when the
main memory does not have enough free space.

Source: https://leimao.github.io/blog/Page-Locked-Host-Memory--
Data-Transfer/

By m_amendola
cheatography.com/m-

amendola/ Page 5 of 5.

Published 22nd July, 2023.
Last updated 3rd November, 2022.

Sponsored by ApolloPad.com
Everyone has a novel in them. Finish
Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/m-amendola/
http://www.cheatography.com/m-amendola/cheat-sheets/cuda-programming
https://leimao.github.io/blog/Page-Locked-Host-Memory-Data-Transfer/
http://www.cheatography.com/m-amendola/
https://apollopad.com

	CUDA Programming Cheat Sheet - Page 1
	Cuda Kernels
	1D Grid of 1D Blocks
	Kernel Config­uration
	1D Grid of 3D Blocks
	CUDA Thread Organi­zation
	2D Grid of 2D Blocks applied on a Matrix

	CUDA Programming Cheat Sheet - Page 2
	CUDA Events
	Synchr­oni­zation operations
	CUDA Streams
	CUDA Streams API

	CUDA Programming Cheat Sheet - Page 3
	CUDA API
	Memory Workflow
	Memory Allocation API Functions
	Global Memory

	CUDA Programming Cheat Sheet - Page 4
	Texture Memory
	Shared Memory
	Constant memory

	CUDA Programming Cheat Sheet - Page 5
	Asynch­ronous Data Transfers
	Error Handling
	Macro for Error Handling
	Page-l­ocked Memory

