

Cheatography

0625 Physics formula sheet Cheat Sheet

by lynn via cheatography.com/216518/cs/47338/

Energy

$$kE = 1/2mv^2$$

$$F = \Delta p / \Delta t$$

$$\Delta GPE = mg\Delta h$$

$$W = Fd = \Delta E$$

$$W = Fd$$

(%) efficiency = (useful energy output) (total energy input) $\times 100\%$

(%) efficiency = (useful power output) (total power input) $\times 100\%$

$$P = W / t$$

$$P = \Delta E / t$$

$$p = F / A$$

$$\Delta p = \rho g \Delta h$$

$$T \text{ (in K)} = \theta \text{ (in } ^\circ\text{C)} + 273$$

$$pV = \text{constant}$$

$$c = \Delta E / m\Delta\theta$$

Forces

$$\Delta p = \rho g \Delta h \text{ (liquid pressure)}$$

Pressure = force / area

$$W = m \times g$$

$$KE = 1/2mv^2$$

$$a = v - u / t$$

$$R.F = F.F - B.F$$

$$R.F \text{ or } F = m \times a$$

$R.F \text{ or } F = m \times a = m \times (v - u / t) = mv - mu / t =$ change in momentum/t

$$F = \Delta \text{ momentum or } P / \Delta t$$

$$\text{impulse} = R.F \text{ or } F \times \Delta t$$

impulse = change in momentum/ change in time

$$m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2 \text{ (conservation of momentum)}$$

$$m_1u_1 + m_2u_2 = (m_1 + m_2) \times V \text{ (when objects stick together)}$$

Thermal physics

$$kE = 1/2mv^2$$

$$F = \Delta p / \Delta t$$

p is inversely proportional to V

$$W = Fd = \Delta E$$

$$p_1v_1 = p_2v_2$$

$$c = \Delta E / m\Delta\theta$$

specific heat capacity = change in thermal energy/mass \times change in temperature

$$P = \Delta E / t$$

$$p = F / A$$

$$\Delta p = \rho g \Delta h$$

$$T \text{ (in K)} = \theta \text{ (in } ^\circ\text{C)} + 273$$

$$pV = \text{constant}$$

$$c = \Delta E / m\Delta\theta$$

waves

where n is the refractive index, V is speed of light

$$n = \sin(i) / \sin(r)$$

$$n = 1 / \sin(c)$$

$$n_2/n_1 = V_1/V_2 = \sin(i) / \sin(r)$$

$$n \text{ (in air)} = 1$$

$$V \text{ (in air)} = 3 \times 10^8$$

$$v = f \lambda$$

Electrical quantities

potential difference is the work done by a unit charge passing through a component, measured between two points in volts (V)

electromotive force (e.m.f.) is the electrical work done by a source in moving a unit charge around a complete circuit measured in volts (V)

$$\text{kilowatt-hour (kWh)} \quad 1000 \quad 1 \text{ kWh} = 3.6 \times 10^6 \text{ J}$$

watts per one hour

resistance, the opposition of a component to the flow of electric current through it measured in ohms (Ω)

charge is measured in coulombs, where one coulomb is the charge on 6.24×10^{18} electrons

Electrical quantities (cont)

$$R1/R2 = V1/V2$$

$$R \text{ total} = R_1 \times R_2 = R_1 + R_2 \text{ or product/sum}$$

Electricity

$$I = Q / t$$

$$\text{emf} = W/Q$$

$$pd = W/Q$$

$$R = V/I$$

$$P = IV$$

$$E = IVt$$

$$R1/R2 = V1/V2$$

$$R \text{ total} = R_1 \times R_2 = R_1 + R_2 \text{ or product/sum}$$

Motion

$$\text{Density} = \text{Mass} / \text{Volume}$$

$$(\text{constant}) S = \text{distance} / \text{time}$$

$$a = v - u / t$$

$$D \text{ (while accelerating)} = v + u \times t$$

$$D = \text{area under the graph}$$

$$W = m \times g$$

$$R.F / F = m \times a$$

$$R.F = F.F - B.F$$

Moment = force \times perpendicular distance from the pivot

Pressure = force / area

(Liquid) pressure = Density $\times g \times$ height

$$X = L_{\text{new}} - L_{\text{original}}$$

$$F = k/x, \text{ where } k \text{ is the spring constant}$$

By lynn

cheatography.com/lynn/

Not published yet.

Last updated 22nd January, 2026.

Page 1 of 1.

Sponsored by [CrosswordCheats.com](http://crosswordcheats.com)

Learn to solve cryptic crosswords!

<http://crosswordcheats.com>