

0625 Physics formula sheet Cheat Sheet by lynm via cheatography.com/216518/cs/47338/

Energy	Forces	waves
kE = 1/2mv2	impulse = $F\Delta t = \Delta(mv)$	$v = f \lambda$
$F = \Delta p/\Delta t$	$F = \Delta p/\Delta t$	n = sini/sinr
Δ GPE = mg Δ h	kE = 1/2mv2	n = 1/ sinc
$W = Fd = \Delta E$	\triangle GPE = mg \triangle h	
W = Fd	$W = Fd = \Delta E$	Motion
(%) efficiency = (useful energy output) (total energy input) × 100%	W = Fd	Density = Mass/ Volume
	a = v-u / t	(constant) S = distance / time
(%) efficiency = (useful power output) (total	$W = m \times g$	a = v-u / t
power input) × 100%	R.F or $F = m \times a$	D (while accelerating) = v+u x t
P = W / t	R.F or F = m x a = m(v-u/t)= mv - mu /t =	D = area under the graph
$P = \Delta E / t$	change in momentum/t	$W = m \times g$
p = F / A	R.F = F.F - B.F	R.F/ $F = m \times a$
$\Delta p = \rho g \Delta h$	Pressure = force / area	R.F = F.F - B.F
T (in K) = θ (in °C) + 273	$\Delta p = \rho g \Delta h$	Moment = force x perpendicular distance
pV = constant		from the pivot
$c = \Delta E / m\Delta \theta$		Pressure = force / area
		(Liquid) pressure = Density x g x height
		X = =new L - original L
		F = k/x

By **lynm**

cheatography.com/lynm/

Not published yet.

Last updated 4th December, 2025.

Page 1 of 1.

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish

Yours!

https://apollopad.com