Cheatography

Neural Networks for Machine Learning Cheat Sheet by lwebzem56 via cheatography.com/51511/cs/14084/

Neural Netwo	orks Types and Main Features
Feedfo- rward neural network	connections between nodes do not have a cycle
Multilayer perceptron (MLP)	has at least three layers of nodes
Reccurent neural network (RNN)	connections between units have a directed cycle
Self-Orga- nising Maps (SOM)	convert input data to low dimensional space
Deep Belief Network (DBN)	has connections between layers but not within layer
Convol- utional Neural Network (CNN)	has one or more convolutional layers and then followed by one or more fully connected layers
Generative Advers- arial Networks (GAN)	system of two neural nets, contesting with each other
Spiking Neural Netorks (SNN)	time information is processed in the form of spikes and there is more than one synapse between neurons

Neural Networks Types and Main Features (cont) Wavelet use wavelet function as neural activation function in the network neuron Wavelet combine wavelet transform convoland CNN utional neural network type of RNN, model for the Long shortterm short-term memory which memory can last for a long period of (LSTM) time Building Neural Network with Keras and

```
Python
from keras.models import
Sequential
model = Sequen tial()
from keras.l ayers import Dense
model.a dd (De nse (un its=64,
activa tio n=' relu', input_ -
dim =100))
model.a dd (De nse (un its=10,
activa tio n=' sof tmax'))
model.c om pil e(l oss ='c ate -
gor ica l_c ros sen tropy',
```

opt imi zer ='sgd',

```
met ric s=[ 'ac cur acy'])
model.c om pil e(l oss =ke -
ras.lo sse s.c ate gor ica l_c -
ros sen tropy,
```

```
opt imi zer =ke ras.op tim ize -
rs.S GD (lr =0.01, moment -
um=0.9, nester ov= True))
model.f it (x_ train, y_train,
epochs=5, batch_ siz e=32)
model.t ra in_ on_ bat ch( x_b -
atch, y_batch)
```

Published 28th December, 2017. Last updated 1st January, 2018. Page 1 of 2. Building Neural Network with Keras and Python (cont)

```
> loss_and_metrics = model.evaluate(-
x_test, y_test, batch_size=128)
classes = model.predict(x_test, batch_siz-
e=128)
```

Keras

Data Preparation for Input to Neural Network

```
from sklearn import
preprocessing
def normal ize da ta(m, XData):
      if m == " ":
               m="s cal ing -
no "
       if m == " sca lin g-n o":
               return XData
       if m == " Sta nda rdS -
cal er":
               std scale =
prepro ces sin g.S tan dar dSc -
ale r().fi t(X Data)
               XDa ta_new =
std sc ale.tr ans for m(X Data)
      if m == " Min Max Sca -
ler ":
               min max scale =
prepro ces sin g.M inM axS cal -
er().f it(XData)
               XDa ta new =
minmax sc ale.tr ans for m(X -
Data)
       return XData new
```

Cheat Sheets about Python and Machine Learning

Quick and Easy Way to get started with common and most used python tasks in data processing

```
Sponsored by Readable.com
Measure your website readability!
https://readable.com
```

By lwebzem56

cheatography.com/lwebzem56/

Cheatography

Neural N

eatography		bzem56 via cheatography.com/51511/cs/14084/	
etwork Applications and Mo	st Used	Neural Net Weight Update Methods (cont)	
5		Nectoral avaluate the gradient at	

Image classification	CNN
Image recognition	CNN
Time series prediction	RNN, LSTM
Text generation	RNN, LSTM
Classification	MLP
Visualization	SOM

Neural Net Weight Update Methods

Adam	based on adaptive estimates of lower order moments
AdaGrad	Adagrad is an adaptive learning rate method
RMSProp	adaptive learning rate method, modification of Adagrad method
SGD	Stochastic gradient descent
AdaDelta	modification of Adagrad to reduce its aggressive, monotonically decreasing learning rate
Newton method	second order method, is not used in deep learning
Momentum	method that helps accelerate SGD in the relevant direction

evaluate the gradient at Nesterov next position instead of accelerated current gradient References: ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION Convolutional Neural Networks for Visual Recognition. An overview of gradient descent optimization algorithms Wikipedia -Artificial neural network

Neural Networks for Machine Learning Cheat Sheet

Neural Networks with Python on the Web
Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras
Implementing a recurrent neural network in python
Time Series Prediction with Convolutional Neural Networks and Keras

By lwebzem56

Published 28th December, 2017. Last updated 1st January, 2018. Page 2 of 2.

Sponsored by Readable.com Measure your website readability! https://readable.com

cheatography.com/lwebzem56/