\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{luckystarr} \pdfinfo{ /Title (penn-state-math-220.pdf) /Creator (Cheatography) /Author (luckystarr) /Subject (Penn State: Math 220 Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{8CD9DE} \definecolor{LightBackground}{HTML}{F0FAFA} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Penn State: Math 220 Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{luckystarr} via \textcolor{DarkBackground}{\uline{cheatography.com/59106/cs/15528/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}luckystarr \\ \uline{cheatography.com/luckystarr} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Published 22nd April, 2018.\\ Updated 22nd April, 2018.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{1.89126 cm} x{3.08574 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{1.1}} \tn % Row 0 \SetRowColor{LightBackground} A Matrix & row, columns \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Coefficients Matrix & Just Left Hand Side \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} Augmented Matrix & Left and Right Hand Side \tn % Row Count 5 (+ 2) % Row 3 \SetRowColor{white} Solving Linear Systems & (1) Augmented Matrix\{\{nl\}\} (2) Row Operations\{\{nl\}\} (3) Solution to Linear System\{\{nl\}\} The RHS is the solution \tn % Row Count 10 (+ 5) % Row 4 \SetRowColor{LightBackground} One Solution & Upper triangle with Augmented Matrix \tn % Row Count 12 (+ 2) % Row 5 \SetRowColor{white} No Solution & Last row is all zeros = RHS number \tn % Row Count 14 (+ 2) % Row 6 \SetRowColor{LightBackground} Infinitely Many Solutions & Last row (including RHS) is all zeros \tn % Row Count 16 (+ 2) % Row 7 \SetRowColor{white} Inconsistent & Has No Solution \tn % Row Count 17 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1.1 Example(1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524159342_Screen Shot 2018-04-19 at 1.31.20 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.74195 cm} x{3.23505 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{1.2}} \tn % Row 0 \SetRowColor{LightBackground} Echelon Matrix & (1) Zero Rows at the bottom \{\{nl\}\} (2) Leading Entries are down and to the right \{\{nl\}\} (3) Zeros are below each leading entry \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} Reduced Echelon Matrix & (1) The leading entry of each nonzero row is 1 \{\{nl\}\} (2) Zeros are below AND above each 1 \tn % Row Count 9 (+ 4) % Row 2 \SetRowColor{LightBackground} Pivot Position & Location of Matrix that Corresponds to a leading 1 in REF \tn % Row Count 12 (+ 3) % Row 3 \SetRowColor{white} Pivot Column & Column in Matrix that contains a pivot \tn % Row Count 14 (+ 2) % Row 4 \SetRowColor{LightBackground} To get to EF & down and right \tn % Row Count 15 (+ 1) % Row 5 \SetRowColor{white} To get to REF & up and left \tn % Row Count 16 (+ 1) % Row 6 \SetRowColor{LightBackground} Free Variables & Variables that don't correspond to pivot columns \tn % Row Count 18 (+ 2) % Row 7 \SetRowColor{white} Consistent System & Pivot in every Column \tn % Row Count 20 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1.2 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524160274_Screen Shot 2018-04-19 at 1.50.03 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.69678 cm} x{4.28022 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{1.3}} \tn % Row 0 \SetRowColor{LightBackground} RR\textasciicircum{}2\textasciicircum{} & Set of all vectors with 2 rows \tn % Row Count 1 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1.3 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524160813_Screen Shot 2018-04-19 at 1.57.54 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1.3 Example (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524160844_Screen Shot 2018-04-19 at 1.58.37 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{1.4}} \tn % Row 0 \SetRowColor{LightBackground} Vector Equation & x1{\bf{a1}}+x2{\bf{a2}}+x3{\bf{a3}} ={\bf{b}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Matrix Equation & A{\bf{x}}={\bf{b}} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} If A is an m x n matrix the following are all true or all false & A{\bf{x}} = {\bf{b}} has a solution for every {\bf{b}} in RR\textasciicircum{}m\textasciicircum{}\{\{nl\}\} Every {\bf{b}} in RR\textasciicircum{}m\textasciicircum{} is a lin. combo of columns in A \{\{nl\}\} Columns of A span RR\textasciicircum{}m\textasciicircum{} \{\{nl\}\} Matrix A has a pivot in every row (i.e. no row of zeros) \tn % Row Count 14 (+ 11) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Anything in {\bf{Bold}} means it is a vector.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1.4 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524161852_Screen Shot 2018-04-19 at 2.11.53 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1.4 Example (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524161878_Screen Shot 2018-04-19 at 2.12.23 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{1.5}} \tn % Row 0 \SetRowColor{LightBackground} Homogeneous & A{\bf{x}} = {\bf{0}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Trivial Solution & A{\bf{x}} = {\bf{0}} if at lease one column is missing a pivot \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} Determine if homogenous Linear System has a non trivial solution & (1) Write as Augmented Matrix \{\{nl\}\} (2) Reduce to EF \{\{nl\}\} (3) Determine if there are any free variables(column w/o pivot) \{\{nl\}\} (4) If any free variables, than a non-trivial solution exists\{\{nl\}\} (5) Non-Trivial Solution can be found by further reducing to REF and solving for {\bf{x}} \tn % Row Count 19 (+ 15) % Row 3 \SetRowColor{white} If A{\bf{x}} = {\bf{0}} has one free variable & Than {\bf{x}} is a line that passes through the origin \tn % Row Count 22 (+ 3) % Row 4 \SetRowColor{LightBackground} If A{\bf{x}} = {\bf{0}} has two free variables & Than {\bf{x}} has a plane that passes through the origin \tn % Row Count 25 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1.5 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524169253_Screen Shot 2018-04-19 at 4.16.35 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1.5 Example (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524169287_Screen Shot 2018-04-19 at 4.16.42 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.69218 cm} x{3.28482 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{1.7}} \tn % Row 0 \SetRowColor{LightBackground} Linear Independence & No free Variables, none of the vectors are multiples of each other \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} To check ind/dep & reduce augmented matrix to EF and see if there are free variables(ie. every column must have a pivot to be linearly independent) \tn % Row Count 8 (+ 5) % Row 2 \SetRowColor{LightBackground} To check if multiples & {\bf{u}} = c * {\bf{v}} \{\{nl\}\} find value of c, then it is a multiple \{\{nl\}\} therefore linearly dependent \tn % Row Count 12 (+ 4) % Row 3 \SetRowColor{white} Linearly Dependent & If there are more columns than rows \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1.7 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524170251_Screen Shot 2018-04-19 at 4.32.23 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{1.8}} \tn % Row 0 \SetRowColor{LightBackground} Every Matrix Transformation is a: & Linear Transformation \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} T({\bf{x}}) = & A({\bf{x}}) \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} If A is m x n Matrix, then the properties are & (1) T({\bf{u}} + {\bf{v}}) = T({\bf{u}}) + T({\bf{v}}) \{\{nl\}\} (2) T(c{\bf{u}}) = cT({\bf{u}}) \{\{nl\}\} (3) T({\bf{0}}) = {\bf{0}} \{\{nl\}\} (4) T(c{\bf{u}} + d{\bf{v}}) = cT({\bf{u}}) + dT({\bf{v}}) \tn % Row Count 11 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1.8 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524170910_Screen Shot 2018-04-19 at 4.47.23 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{1.8 Example (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524171086_Screen Shot 2018-04-19 at 4.47.23 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{1.9}} \tn % Row 0 \SetRowColor{LightBackground} RR\textasciicircum{}n\textasciicircum{} -{}-\textgreater{} RR\textasciicircum{}m\textasciicircum{} is said to be 'onto' & Equation T({\bf{x}}) =A{\bf{x}}={\bf{b}} has a unique solution or more than one solution \{\{nl\}\} each row has a pivot \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} RR\textasciicircum{}n\textasciicircum{} -{}-\textgreater{} RR\textasciicircum{}m\textasciicircum{} is said to be one-to-one & Equation T({\bf{x}}) =A{\bf{x}}={\bf{b}} has a unique solution or no solution \{\{nl\}\} each row has a pivot \tn % Row Count 11 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.38896 cm} x{2.58804 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{2.1}} \tn % Row 0 \SetRowColor{LightBackground} Addition of Matrices & Can Add matrices if they have same \# of rows and columns \{\{nl\}\} (ie {\bf{A}}(3x4) and {\bf{B}}(3x4) so you can add them) \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} Multiply by Scalar & Multiply each entry by scalar \tn % Row Count 8 (+ 2) % Row 2 \SetRowColor{LightBackground} Matrix Multiplication ({\bf{A}} x {\bf{B}}) & Must each row of {\bf{A}} by each column of {\bf{B}} \tn % Row Count 11 (+ 3) % Row 3 \SetRowColor{white} Powers of a Matrix & Can compute powers by if the matrix has the same number of columns as rows \tn % Row Count 15 (+ 4) % Row 4 \SetRowColor{LightBackground} Transpose of Matrix & row 1 of A becomes column 1 of A \{\{nl\}\} row 2 of A becomes column 2 of A \tn % Row Count 19 (+ 4) % Row 5 \SetRowColor{white} Properties of Transpose & (1) if {\bf{A}} is m x n, then {\bf{A}}\textasciicircum{}T\textasciicircum{} is n x m \{\{nl\}\} (2) ({\bf{A}}\textasciicircum{}T\textasciicircum{})\textasciicircum{}T\textasciicircum{} = {\bf{A}} \{\{nl\}\} (3) ({\bf{A}} + {\bf{B}})\textasciicircum{}T\textasciicircum{} = {\bf{A}} \textasciicircum{}T\textasciicircum{} + {\bf{B}} \textasciicircum{}T\textasciicircum{} \{\{nl\}\} (4) (t{\bf{A}})\textasciicircum{}T\textasciicircum{} = t{\bf{A}}\textasciicircum{}T\textasciicircum{} \{\{nl\}\} (5) ({\bf{A}} {\bf{B}})\textasciicircum{}T\textasciicircum{} = {\bf{B}}\textasciicircum{}T\textasciicircum{} {\bf{A}}\textasciicircum{}T\textasciicircum{} \tn % Row Count 30 (+ 11) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.28942 cm} x{2.68758 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{2.2}} \tn % Row 0 \SetRowColor{LightBackground} Singular matrix & A matrix that is NOT investable \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Determinate of A (2 x 2) Matrix & det A = ad - bc \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} If A is invertable \& (nxn) & There will never be no solution or infinitely many solutions to A{\bf{x}} = {\bf{b}} \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} Properties of Invertable Matricies & ({\bf{A}}\textasciicircum{}-1\textasciicircum{})\textasciicircum{}-1\textasciicircum{} = {\bf{A}} \{\{nl\}\} (assuming {\bf{A}} \& {\bf{B}} are investable) (AB)\textasciicircum{}-1\textasciicircum{} = B\textasciicircum{}-1\textasciicircum{} A\textasciicircum{}-1\textasciicircum{} \{\{nl\}\} (A\textasciicircum{}T\textasciicircum{})\textasciicircum{}-1\textasciicircum{} = (A\textasciicircum{}-1\textasciicircum{})\textasciicircum{}T\textasciicircum{} \tn % Row Count 14 (+ 6) % Row 4 \SetRowColor{LightBackground} Finding Inverse Matrix & {[}A | I {]} -{}-\textgreater{} {[} I | A\textasciicircum{}-1\textasciicircum{}{]} {\emph{Use row operations}} \{\{nl\}\} STOP when you get a row of Zeros, it cannot be reduced \tn % Row Count 20 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{2.2 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524173186_Screen Shot 2018-04-19 at 5.23.28 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{2.3 Invertable Matrix Theorem}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524173342_Screen Shot 2018-04-19 at 5.28.22 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{2.8}} \tn % Row 0 \SetRowColor{LightBackground} A subspace {\emph{S}} of RR\textasciicircum{}n\textasciicircum{} is a subspace is {\emph{S}} satisfies: & (1) {\emph{S}} contains zero vector \{\{nl\}\} (2) If {\bf{u}} \& {\bf{v}} are in {\emph{S}}, then {\bf{u}} + {\bf{v}} is also in {\emph{S}} \{\{nl\}\} (3) If {\emph{r}} is a real \# \& {\bf{u}} is in {\emph{S}}, then r{\bf{u}} is also in {\emph{S}} \tn % Row Count 9 (+ 9) % Row 1 \SetRowColor{white} Subspace RR\textasciicircum{}3\textasciicircum{} & Any Plane that Passes through the origin forms a subspace RR\textasciicircum{}3\textasciicircum{} \{\{nl\}\} Any set that contains nonlinear terms will NOT form a subspace RR\textasciicircum{}3\textasciicircum{} \tn % Row Count 16 (+ 7) % Row 2 \SetRowColor{LightBackground} Null Space (Nul A) & To determine in {\bf{u}} is in the Nul(A), check if: A{\bf{u}} = {\bf{0}} \{\{nl\}\} If yes -{}-\textgreater{} then {\bf{u}} is in the Nullspace \tn % Row Count 22 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{2.8 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524174156_Screen Shot 2018-04-19 at 5.41.50 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{2.8 Example (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524174181_Screen Shot 2018-04-19 at 5.41.56 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.18988 cm} x{2.78712 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{2.9}} \tn % Row 0 \SetRowColor{LightBackground} Dimension of a non-zero Subspace & \# of vectors in any basis; it is the \# of linearly independent vectors \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} Dimension of a zero Subspace & is Zero \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} Dimension of a Column Space & \# of pivot columns \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} Dimension of a Null Space & \# of free variables in the solution A{\bf{x}}={\bf{0}} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} Rank of a Matrix & \# of pivot columns \tn % Row Count 12 (+ 1) % Row 5 \SetRowColor{white} The Rank Theorem & Matrix A has {\emph{n}} columns: rank A (\# pivots) + dim Nul A (\# free var.) = {\emph{n}} \tn % Row Count 16 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{dim = dimension; var. = variable} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{2.9 Refrence}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524174695_Screen Shot 2018-04-19 at 5.51.03 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{3.1}} \tn % Row 0 \SetRowColor{LightBackground} Calculating Determinant of Matrix A is another way to tell if a linear system of equations has a solution & (1) Det(A) not =0, then A{\bf{x}}={\bf{b}} has a unique solution \{\{nl\}\} (2) Det(A) =0, then A{\bf{x}}={\bf{b}} has no solutions or inf many \tn % Row Count 7 (+ 7) % Row 1 \SetRowColor{white} If A{\bf{x}} not= {\bf{0}} & A\textasciicircum{}-1\textasciicircum{} exist \tn % Row Count 8 (+ 1) % Row 2 \SetRowColor{LightBackground} If A{\bf{x}} = {\bf{0}} & A\textasciicircum{}-1\textasciicircum{} Does NOT exist \tn % Row Count 9 (+ 1) % Row 3 \SetRowColor{white} Cofactor Expansion & Use row/column w/ most zeros \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} If Matrix A has an upper or lower triangle of zeros & The det(A) is the multiplication down the diagonals \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{3.1 Reference (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524354905_Screen Shot 2018-04-21 at 7.49.41 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{3.1 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524354939_Screen Shot 2018-04-21 at 7.49.52 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{3.1 Reference (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524354971_Screen Shot 2018-04-21 at 7.51.05 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{3.1 Example (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524355003_Screen Shot 2018-04-21 at 7.53.44 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.43873 cm} x{2.53827 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{3.2}} \tn % Row 0 \SetRowColor{LightBackground} Determinate Property 1 & If a multiple of 1 row of A is added to another row to produce Matrix B, then det(B)=det(A) \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} Determinate Property 2 & If 2 rows of A are interchanged to produce B, then det(B)=-det(A) \tn % Row Count 9 (+ 4) % Row 2 \SetRowColor{LightBackground} Determinate Property 3 & If one row of A is multiplied to produce B, then det(B)=k*det(A) \tn % Row Count 13 (+ 4) % Row 3 \SetRowColor{white} Assuming both A \& B are n x n Matrices & (1) det(A\textasciicircum{}T\textasciicircum{}) = det(A) \{\{nl\}\} (2) det(AB) = det(A)*det(B) \{\{nl\}\} (3) det(A\textasciicircum{}-1\textasciicircum{}) = 1/det(A) \{\{nl\}\} (4) det(cA) = c\textasciicircum{}n\textasciicircum{} det(A) \{\{nl\}\} (5) det(A\textasciicircum{}r\textasciicircum{}) = (detA)\textasciicircum{}r\textasciicircum{} \tn % Row Count 21 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.69218 cm} x{3.28482 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{3.3 AKA Cramer's Rule}} \tn % Row 0 \SetRowColor{LightBackground} Cramer's Rule & Can be used to find the solution to a linear system of equations A{\bf{x}}={\bf{b}} when A is an investable square matrix \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} Def. of Cramer's Rule & Let A be an n x n invertible matrix. For any {\bf{b}} in RR\textasciicircum{}n\textasciicircum{}, the unique solution {\bf{x}} of A{\bf{x}}={\bf{b}} has entries given by \{\{nl\}\} xi = detAi({\bf{b}})/det(A) {\emph{i = 1,2,...n}} \tn % Row Count 12 (+ 7) % Row 2 \SetRowColor{LightBackground} Ai({\bf{b}}) & is the matrix A w/ column i replaced w/ vector {\bf{b}} \tn % Row Count 14 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{3.3 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524355947_Screen Shot 2018-04-21 at 8.11.55 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{5.1}} \tn % Row 0 \SetRowColor{LightBackground} A{\bf{u}}=λ{\bf{u}} & A is an nxn matrix. A nonzero vector {\bf{u}} is an eigenvector of A if there exists such a scalar λ \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} To determine if λ is an eigenvalue & reduce {[}(A-λI)|0{]} to echelon form and see if it has any free variables. \{\{nl\}\} yes -\textgreater{} λ is Eigenvalue \{\{nl\}\} no -\textgreater{} λ is not eigenvalue \tn % Row Count 12 (+ 7) % Row 2 \SetRowColor{LightBackground} To determine if given vector is an eigenvector & Ax=λ{\bf{x}} \tn % Row Count 15 (+ 3) % Row 3 \SetRowColor{white} Eigenspace of A = & Nullspace of (A-λI) \tn % Row Count 16 (+ 1) % Row 4 \SetRowColor{LightBackground} Eigenvalues of triangular Matrix & entries along diagonal *you CANNOT row reduce a matrix to find its eigenvalues \tn % Row Count 20 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{5.1 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524356577_Screen Shot 2018-04-21 at 8.17.50 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{5.1 Example (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524356601_Screen Shot 2018-04-21 at 8.19.45 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{5.1 Example (3)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524356626_Screen Shot 2018-04-21 at 8.20.51 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{5.2}} \tn % Row 0 \SetRowColor{LightBackground} If λ is an eigenvalue of a Matrix A & then (A-λI){\bf{x}}={\bf{0}} will have a nontrivial solution \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} A nontrivial solution will exist & if det(A-λI)=0 (Characteristic Equation) \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} A is nxn Matrix. A is invertible if and only if & (1) The \# 0 is NOT an λ of A \{\{nl\}\} (2) The det(A) is not zero \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} Similar Matrices & If nxn Matrices A and B are similar, then they have the same characteristic polynomial (same λ) with same multiplicities \tn % Row Count 17 (+ 7) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{5.2 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524357115_Screen Shot 2018-04-21 at 8.27.48 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.33919 cm} x{2.63781 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{5.3}} \tn % Row 0 \SetRowColor{LightBackground} A matrix A written in diagonal form & A=PDP\textasciicircum{}-1\textasciicircum{} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Power of Matrix & A\textasciicircum{}k\textasciicircum{} = Diagonal matrix and \#'s on diagonal get raised to the k \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Determining if Matrix is Diagonalizable} \tn % Row Count 6 (+ 1) % Row 3 \SetRowColor{white} λ of a nxn matrix & n distinct (or real) λ then matrix is diagonalizable \{\{nl\}\} less than n λ, it may or may not be diagonalizable; it will be if \# of linearly dependent eigenvectors = n \tn % Row Count 14 (+ 8) % Row 4 \SetRowColor{LightBackground} eigenvectors of nxn matrix & n linearly independent eigenvectors, then diagonalizable \{\{nl\}\} less than n linearly independent eigenvectors, then matrix is NOT diagonlizable \tn % Row Count 21 (+ 7) % Row 5 \SetRowColor{white} {\emph{D}} & matrix w/ λ down diagonal \tn % Row Count 23 (+ 2) % Row 6 \SetRowColor{LightBackground} {\emph{P}} & columns of P have linearly n linearly independent eigenvectors \tn % Row Count 26 (+ 3) % Row 7 \SetRowColor{white} Finding {\emph{P}} & solve A-λI and plug in the λ values. Reduce to EF, solve for {\bf{x}}, \& find eigenvector \tn % Row Count 31 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{5.3 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524357862_Screen Shot 2018-04-21 at 8.41.19 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{5.3 Example (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524357887_Screen Shot 2018-04-21 at 8.43.09 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{5.3 Example (3)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524357911_Screen Shot 2018-04-21 at 8.43.40 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{6.1}} \tn % Row 0 \SetRowColor{LightBackground} Length of vector {\bf{x}} & ||{\bf{x}}|| = sqrt(x1\textasciicircum{}2\textasciicircum{}+x2\textasciicircum{}2\textasciicircum{}) \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} Length fo vector {\bf{x}} in RR\textasciicircum{}2\textasciicircum{} & ||{\bf{x}}|| = sqrt({\bf{x}} • {\bf{x}}) \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} The Unit Vector & {\bf{u}} = v/||v|| \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} Two vectors {\bf{u}} \& {\bf{v}} in RR\textasciicircum{}n\textasciicircum{}, the distance between {\bf{u}} \& {\bf{v}} & ||{\bf{u}} - {\bf{v}}|| \tn % Row Count 9 (+ 4) % Row 4 \SetRowColor{LightBackground} Two vectors {\bf{u}} \& {\bf{v}} are orthogonal if and only if & ||u+v||\textasciicircum{}2\textasciicircum{}= ||u||\textasciicircum{}2\textasciicircum{} +||v||\textasciicircum{}2\textasciicircum{} \{\{nl\}\} {\bf{u}} • {\bf{v}} = 0 \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.73735 cm} x{2.23965 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{6.2}} \tn % Row 0 \SetRowColor{LightBackground} The distance from {\bf{y}} to the line through {\bf{u}} \& the origin & ||{\bf{z}}|| = ||{\bf{y}} - {\bf{y-hat}}|| \tn % Row Count 3 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.2 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524359014_Screen Shot 2018-04-21 at 8.58.39 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.2 Example (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524359033_Screen Shot 2018-04-21 at 8.58.58 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.2 Example (3)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524359059_Screen Shot 2018-04-21 at 9.00.14 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.2 Example (4)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524359081_Screen Shot 2018-04-21 at 9.00.21 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.2 Example (5)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524359103_Screen Shot 2018-04-21 at 9.01.49 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.2 Example (6)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524359127_Screen Shot 2018-04-21 at 9.02.35 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.2 Example (7)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524359150_Screen Shot 2018-04-21 at 9.02.44 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.2 Reference (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524359232_6.2 Reference.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.2 Reference (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524359262_6.2 Reference 2.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.3 Example (1.1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524415053_Screen Shot 2018-04-22 at 12.35.49 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.3 Example (1.2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524415077_Screen Shot 2018-04-22 at 12.35.57 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.3 Example (2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524415100_Screen Shot 2018-04-22 at 12.36.25 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.3 Example (3)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524415126_Screen Shot 2018-04-22 at 12.36.50 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.3 Example (4)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524415150_Screen Shot 2018-04-22 at 12.37.04 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{6.4}} \tn % Row 0 \SetRowColor{LightBackground} Gram- Schmidt Process Overview & take a given set of vectors \& transform them into a set of orthogonal or orthonormal vectors \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} Given {\bf{x1}} \& {\bf{x2}}, produce {\bf{v1}} \& {\bf{v2}} where the v's are perp. to each other & (1) Let {\bf{v1}}={\bf{x1}} \{\{nl\}\} (2) Find {\bf{v2}}; {\bf{v2}}={\bf{x2}} - {\bf{x2hat}} \tn % Row Count 10 (+ 5) % Row 2 \SetRowColor{LightBackground} {\bf{x2 hat}} & (x2•v1)/(v1•v1) * v1 \tn % Row Count 12 (+ 2) % Row 3 \SetRowColor{white} Orthogonal Basis & \{{\bf{v1}},{\bf{v2}},...,{\bf{vn}}\} \tn % Row Count 14 (+ 2) % Row 4 \SetRowColor{LightBackground} Orthonormal Basis & \{{\bf{v1}}/||{\bf{v1}}||, {\bf{v2}}/ ||{\bf{v2}}||,..., {\bf{vn}}/||{\bf{vn}}||\} \tn % Row Count 18 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.4 Reference (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524415853_G-S process for RR3.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{6.4 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524415873_Screen Shot 2018-04-22 at 12.46.00 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{7.1}} \tn % Row 0 \SetRowColor{LightBackground} Symmetric Matrix & A square matrix where A\textasciicircum{}T\textasciicircum{}=A \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} If A is a symmetric Matrix & then eigenvectors associated w/ distinct eigenvalues are orthogonal \{\{nl\}\} If a matrix is symmetrical, it has an orthogonal \& orthonormal basis of vectors \tn % Row Count 10 (+ 8) % Row 2 \SetRowColor{LightBackground} Orthogonal matrix is a square matrix w/ orthonormal columns & (1) Matrix is square \{\{nl\}\} (2) Columns are orthogonal \{\{nl\}\} (3) Columns are unit vectors \tn % Row Count 15 (+ 5) % Row 3 \SetRowColor{white} If Matrix P has orthonormal columns & P\textasciicircum{}T\textasciicircum{}P=I \tn % Row Count 17 (+ 2) % Row 4 \SetRowColor{LightBackground} If P is a nxn orthogonal matrix & P\textasciicircum{}T\textasciicircum{}=P\textasciicircum{}-1\textasciicircum{} \tn % Row Count 19 (+ 2) % Row 5 \SetRowColor{white} A=PDP\textasciicircum{}T\textasciicircum{} & A must be symmetric, P must be normalized \tn % Row Count 22 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{7.1 Reference (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524416693_7.1 Reference.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{7.1 Example (1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524416725_Screen Shot 2018-04-22 at 1.00.37 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{7.1 Example (2.1)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524416750_Screen Shot 2018-04-22 at 1.03.39 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{7.1 Example (2.2)}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/luckystarr_1524416771_Screen Shot 2018-04-22 at 1.03.55 PM.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}