

1.1	
A Matrix	row, columns
Coefficients Matrix	Just Left Hand Side
Augmented Matrix	Left and Right Hand Side
Solving Linear Systems	(1) Augmented Matrix(2) Row Operations(3) Solution to LinearSystemThe RHS is the solution
One Solution	Upper triangle with Augmented Matrix
No Solution	Last row is all zeros = RHS number
Infinitely Many Solutions	Last row (including RHS) is all zeros
Inconsistent	Has No Solution

1.2 (cont)	
Reduced Echelon Matrix	(1) The leading entry of each nonzero row is 1(2) Zeros are below AND above each 1
Pivot Position	Location of Matrix that Corresponds to a leading 1 in REF
Pivot Column	Column in Matrix that contains a pivot
To get to EF	down and right
To get to REF	up and left
Free Variables	Variables that don't correspond to pivot columns
Consistent	Pivot in every Column

1.4	
Vector Equation	x1a1+x2a2+x3a3 =b
Matrix Equation	Ax=b
If A is an m x n matrix the following are all true or all false	Ax = b has a solution for every b in RR ^m Every b in RR ^m is a lin. combo of columns in A Columns of A span RR ^m Matrix A has a pivot
	in every row (i.e. no row of zeros)

Anything in **Bold** means it is a vector.

1.1 Example(1)

• Example - Use matrices to solve the following system of equations $x_1 - 2x_2 + x_3 = 0$ $2x_2 - 8x_3 = 8$ $4x_1 + 5x_2 + 9x_3 = -9$ work down and to the right I. Then up and to the left

• Example 1 - Determine the value(s) of h such that the following -hRI+RZ A considert system cannot contain an equation of the form $0=\frac{1}{2}$ but it can contain an equation $0=\frac{1}{2}$ but it can contain an equation 0=0. Set 0=0 and check the value of 0=0. Set 0=0 and 0=0 check the value of 0=0. The 0=0 contains 0=0 contains 0=0 contains 0=0.

1.3

System

1.2 Example (1)

RR² Set of all vectors with 2 rows

1.2

Echelon Matrix

- (1) Zero Rows at the bottom
- (2) Leading Entries are down and to the right
- (3) Zeros are below each leading entry

1.3 Example (1)

1.4 Example (1)

By luckystarr cheatography.com/luckystarr/ Published 22nd April, 2018. Last updated 22nd April, 2018. Page 1 of 8.

1.4 Example (2)

• Example - Determine if the columns of matrix A span \mathbb{R}^3 . $A = \begin{bmatrix} 0 & 0 & 4 \\ 0 & -3 & -2 \\ -3 & 9 & -6 \end{bmatrix}$ i.e. Determine if $A\hat{X} = \hat{b}$ has a solution for all \hat{b} . Reduce $(\hat{a}^2, \hat{d}_2, \hat{d}_3 \mid \hat{b})$ to echelon from: $\begin{bmatrix} 0 & 0 & 4 \\ 0 & -3 & 2 \\ -3 & 2 & -6 \\ 0 & 3 & 2 \end{bmatrix} \Rightarrow \begin{bmatrix} -3 & 9 & -6 \\ 0 & -2 & 2 \\ 0 & -3 & 2 \end{bmatrix} \xrightarrow{b_2}$

Every row has a pluot so there will be no restrictions on B and there will be a solution for every B.

This means that the columns of A span R35

because there are 3 raws

1.5

Homogeneous Ax = 0Trivial Solution Ax = 0 if at lease one column is missing a pivot

Determine if homogenous Linear System has a non trivial solution (1) Write asAugmented Matrix

(2) Reduce to EF

(3) Determine if there are any free variables-(column w/o pivot)

(4) If any free variables, than a nontrivial solution exists

(5) Non-Trivial Solution can be found by further reducing to REF and solving for x

If Ax = 0 has one free variable

Than **x** is a line that passes through the origin

If Ax = 0 has two free variables

Than **x** has a plane that passes through the origin

1.5 Example (1)

• Example 1 - Determine if the following linear system has a nontrivial solution and then describe the solution set. Reduce the augmointed matrix to explain few matrix, to explain fe

1.5 Example (2)

• Example 2 - Determine if the following linear system has a nontrivial solution and then describe the solution set. $2x_1 + 4x_2 - 6x_3 = 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \\ 24 + -6 & 0 \end{bmatrix}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 = 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 = 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 = 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0 \\ 4x_1 + 8x_2 = 10x_3 = 0 \end{cases}$ $\begin{cases} 2 + -6 & 0$

1.7

Linear No free Variables, none of the Indepevectors are multiples of each ndence other To check reduce augmented matrix to ind/dep EF and see if there are free variables(ie. every column must have a pivot to be linearly independent) To check if $\mathbf{u} = \mathbf{c} * \mathbf{v}$ multiples find value of c, then it is a multiple therefore linearly dependent Linearly If there are more columns Dependent than rows

1.7 Example (1)

 Example 4 - Determine the values of h that make the following vectors linearly dependent.

Reduce
$$\begin{bmatrix} \vec{v}, \ \vec{v}_2, \ \vec{v}_3 \ | \ 0 \end{bmatrix}$$
 to exhelon form and Chose h so that there is a free worldby $\begin{bmatrix} \vec{v}, \ \vec{v}_2, \ \vec{v}_3 \ | \ 0 \end{bmatrix}$ to exhelon form and Chose h so that there is a free worldby $\begin{bmatrix} \vec{v}, \ \vec{v}_2, \ \vec{v}_3 \ | \ 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -2 & 3 & 0 \\ -4 & 4 & h & 0 \\ -4 & 4 & h & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} -2 & 3 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$ For there to be a $\begin{bmatrix} -2 & 3 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$ For there to be a $\begin{bmatrix} -2 & 3 & 0 \\ 0 & -8 & 10 & 1 \end{bmatrix}$ free variable, $-\frac{(h+1)^2}{2} = 0 \Rightarrow \frac{(h-2)^2}{2} = 0$

1.8

Every Matrix Transformation is a: T(x) = A(x)If A is m x n Matrix, then the properties are T(u) + T(v) (2) T(cu) = cT(u) (3) T(0) = 0 (4) T(cu + dv) = cT(u) + dT(v)

1.8 Example (1)

• Example 5 - Suppose
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 be a linear transformation such that $T\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}2\\3\\3\end{bmatrix}$ and $T\left(\begin{bmatrix}1\\1\\-1\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix}$. Find $T\left(\begin{bmatrix}4\\0\end{bmatrix}\right)$. Let $\overrightarrow{x} = \begin{bmatrix}4\\0\end{bmatrix}$ ① write \overrightarrow{x} as a linear combination of $\begin{bmatrix}1\\1\\0\end{bmatrix}$ and $\begin{bmatrix}1\\1\\1\end{bmatrix}$.
$$\begin{bmatrix}4\\0\end{bmatrix} = c_1\begin{bmatrix}1\\1\end{bmatrix} + c_2\begin{bmatrix}1\\1\end{bmatrix}$$
 ② Find the transformation of $\overrightarrow{x} = c_1 + c_2 = c_1 + c_2 = c_2 = c_3 = c_4 = c_5 =$

1.8 Example (2)

By **luckystarr** cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 2 of 8.

1.9

RRⁿ --> RR^m Equation T(x) = Ax = b has a is said to be unique solution or more 'onto' than one solution each row has a pivot RRⁿ --> RR^m Equation T(x) = Ax = b has a unique solution or no is said to be one-to-one solution each row has a pivot

2.1

a Matrix

Transpose

of Matrix

Addition of Can Add matrices if they have Matrices same # of rows and columns (ie A(3x4) and B(3x4) so you can add them) Multiply by Multiply each entry by scalar Scalar Matrix Must each row of A by each Multipliccolumn of B ation (Ax B) Powers of Can compute powers by if the

matrix has the same number

row 1 of A becomes column 1

row 2 of A becomes column 2

of columns as rows

of A

of A

2.1 (cont)

Properties of Transpose is n x m (2) $(A^{T})^{T} = A$ (3) $(A + B)^T = A^T + B^T$

2.2

Singular A matrix that is NOT matrix investable Determinate $\det A = \operatorname{ad} - \operatorname{bc}$ of A (2 x 2) Matrix There will never be no If A is invertable & solution or infinitely many solutions to Ax = b(nxn) $(A^{-1})^{-1} = A$ Properties of Invertable (assuming A & B are investable) $(AB)^{-1} = B^{-1} A^{-1}$ Matricies $(A^{T})^{-1} = (A^{-1})^{T}$ Finding [A | I] --> [I | A⁻¹] Use row Inverse operations Matrix STOP when you get a row of Zeros, it cannot be

(1) if **A** is m x n, then \mathbf{A}^{T}

 $(4) (tA)^{\mathsf{T}} = tA^{\mathsf{T}}$

(5) $(A B)^T = B^T A^T$

(1) S contains zero A subspace S of RRⁿ is a vector subspace is S(2) If u & v are in S, then satisfies: $\mathbf{u} + \mathbf{v}$ is also in S(3) If r is a real # & \mathbf{u} is in S, then ru is also in SSubspace RR³ Any Plane that Passes through the origin forms

2.3 Invertable Matrix Theorem

 The Invertible Matrix Theorem - Let A be a square n × n matrix Then all of the following statements are equivalent:

(a) A is an invertible matrix
(b) A is row equivalent to the $n \times n$ identity matrix I.

(b) The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for each \mathbf{b} in \mathbb{R}^n .
(b) The columns of A span \mathbb{R}^n .
(i) The linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is onto.

The above theorem states that if one of these is false, they all

(c) A has n pivots. (d) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. (e) The columns of A form a linearly independent set. (f) The linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is one-to-one

There is an $n \times n$ matrix C such that CA = I(k) There is an $n \times n$ matrix D such that AD = I (l) A^T is invertible.

must be false. If one is true, then they are all true.

a subspace RR³ Any set that contains nonlinear terms will

NOT form a subspace RR³

Null Space (Nul To determine in **u** is in the Nul(A), check if: Au

If yes --> then u is in the Nullspace

2.2 Example (1)

• Example 2 - Let A, B, C and X be $n \times n$ invertible matrices. Solve $B(X+A)^{-1}=C$ for the matrix X. Method 2 Method 1 Get (X+A) -1 by itself. 1st. $B(x+A)^{-1} = C$ $(B(x+A)^{-1})^{-1} = C^{-1}$ $((x+A)^{-1})^{-1}B^{-1} = C^{-1}$ B(x+A) = C B(x+A) = C Note: If you multiply on the left for one side, you must multiply on the left on the (x+AX(B-1)=c-1 XB-1+AB-1=C-1 ... χβ-1 = C-1 - Aβ-1 $\chi \, \mathcal{G}^{-1} \, \mathcal{G} = (\, \mathcal{C}^{-1} - \mathcal{A} \mathcal{B}^{-1} \,) \mathcal{B}$ $\chi = C^{-1}B - AB^{-1}B$ X = C B-A

reduced

By luckystarr cheatography.com/luckystarr/ Published 22nd April, 2018. Last updated 22nd April, 2018. Page 3 of 8.

2.8 Example (1)

Example 1 - Given the following matrix A and an echelon form of A, find a basis for Col A.

$$A = \begin{bmatrix} 2 & -4 & 7 & 2 \\ 3 & -6 & 6 & -6 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & \boxed{3} & 6 \\ 0 & 0 & 0 & \boxed{3} & 6 \end{bmatrix}$$
pivot columns = columns | and 3.
basis for Col A = pivot columns of A (echelon form of A)
$$basis for Col A = \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 7 \\ 1 \\ 2 \end{bmatrix}$$

$$Col A = C_1 \begin{bmatrix} 3 \\ 3 \end{bmatrix} + C_2 \begin{bmatrix} 7 \\ 2 \end{bmatrix}$$

2.8 Example (2)

• Example 2 - Given the following matrix A and an echelon form of A

2.9

of vectors in any basis; it Dimension of a non-zero is the # of linearly indepe-Subspace ndent vectors Dimension of is Zero

a zero Subspace

Dimension of # of pivot columns

a Column Space

Dimension of # of free variables in the

a Null Space solution Ax=0

Rank of a

of pivot columns

Matrix

The Rank Matrix A has n columns: Theorem rank A (# pivots) + dim Nul

A (# free var.) = n

dim = dimension; var. = variable

2.9 Refrence

• The Invertible Matrix Theorem Continued- Let A be a square $n \times n$ Because every vector in Rⁿ can be written as a linear combination of the columns of A. nk + + dim Nul+ = n

3.1

(1) Det(A) not Calculating Determinant of Matrix A is another way to =0. then tell if a linear system of Ax=b has a equations has a solution unique solution (2) Det(A)

> =0. then Ax=b has no solutions or inf many

If Ax not= 0

If Ax = 0

A⁻¹ Does NOT exist

Use

A⁻¹ exist

Cofactor Expansion

row/column w/ most zeros

If Matrix A has an upper or lower triangle of zeros

The det(A) is the multiplication down the diagonals

3.1 Reference (1)

Let A be an n × n matrix (or here a 3x3 matrix)

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + a_{13} \det A_{13}$$

$$\det A_{11} = a_{22}a_{33} - a_{23}a_{32} = \begin{bmatrix} a_{22} & a_{23} \\ a_{22} & a_{32} \\ a_{23} & a_{23} \end{bmatrix}$$

$$\det A_{12} = a_{21}a_{33} - a_{23}a_{31} = \begin{bmatrix} a_{31} & a_{23} \\ a_{23} & a_{23} \\ a_{31} & a_{32} \end{bmatrix}$$

$$\det A_{13} = a_{21}a_{32} - a_{22}a_{31} = \begin{bmatrix} a_{31} & a_{23} \\ a_{23} & a_{23} \\ a_{24} & a_{22} \\ a_{24} & a_{24} & a_{24} \end{bmatrix}$$

This formula utilizes a cofactor expansion across the first

3.1 Example (1)

• Example - Compute the determinate of

3.1 Reference (2)

3.1 Example (2)

· Example 2 - Use a cofactor expansion to compute the determinate of chanse the row or column \$500 B

3.2

Determ-If a multiple of 1 row of A is inate added to another row to produce Matrix B, then det(B)-Property =det(A) 1

Determinate

If 2 rows of A are interchanged to produce B, then det(B)=-det(A)

Property 2

Determinate

If one row of A is multiplied to produce B, then det(B)=k*det(A)

Property

3

By luckystarr

cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 4 of 8.

3.2 (cont)

Assuming both A & B (1) $det(A^T) =$ are n x n Matrices det(A)(2) det(AB) = $det(A)^*det(B)$ (3) $det(A^{-1}) =$ 1/det(A)(4) $det(cA) = c^n$ det(A)(5) $det(A^T) =$

(detA)^r

3.3 AKA Cramer's Rule

Cramer's Can be used to find the solution Rule to a linear system of equations Ax=b when A is an investable square matrix Def. of Let A be an n x n invertible Cramer's matrix. For any b in RRⁿ, the Rule unique solution x of Ax=b has entries given by xi = detAi(b)/det(A) i = 1,2,...nAi(b) is the matrix A w/ column i replaced w/ vector b

3.3 Example (1)

5.1

Au=λu A is an nxn matrix. A nonzero vector u is an eigenvector of A if there exists such a scalar λ То reduce [(A-λI)|0] to echelon determine if form and see if it has any λ is an free variables. yes -> λ is Eigenvalue eigenvalue no -> λ is not eigenvalue То $Ax = \lambda x$

determine if given vector is an eigenvector

Eigenspace Nullspace of $(A-\lambda I)$ of A =

Eigenvalues entries along diagonal *you of triangular CANNOT row reduce a Matrix matrix to find its eigenvalues

5.1 Example (1)

5.1 Example (2)

5.1 Example (3)

5.2

If λ is an then $(A-\lambda I)x=0$ will have a eigenvalue nontrivial solution of a Matrix

nontrivial E solution

if det(A-λI)=0 (Characteristic Equation)

(2) The det(A) is not zero

solution will exist

A is nxn (1) The # 0 is NOT an λ of A

Matrix. A

invertible if and only if

Similar Matrices

If nxn Matrices A and B are similar, then they have the same characteristic polynomial (same λ) with same multiplicities

By luckystarr

cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 5 of 8.

2 = 7, multiplicity Z

Penn State: Math 220 Cheat Sheet by luckystarr via cheatography.com/59106/cs/15528/

5.2 Example (1)

• Example 1 - Find the eigenvalues of the following matrix and state their multiplicity: $de+(\lambda-\lambda I)=0$ $\begin{vmatrix} Q-\lambda & -2 \\ 2 & 5-\lambda \end{vmatrix}=0$

5.3

form

A matrix A=PDP-1 A written in diagonal

Power of A^k = Diagonal matrix and #'s on diagonal get raised to the k Matrix

Determining if Matrix is Diagonalizable

λ of a n distinct (or real) λ then matrix nxn is diagonalizable

less than n λ , it may or may not matrix be diagonalizable; it will be if #

> of linearly dependent eigenvectors = n

eigenvectors of nxn

matrix

D

n linearly independent eigenvectors, then diagonalizable less than n linearly independent eigenvectors, then matrix is NOT diagonlizable

matrix w/ λ down diagonal

5.3 (cont)

columns of P have linearly n linearly independent eigenvectors Finding solve A- λI and plug in the λ values. Reduce to EF, solve for

x, & find eigenvector

5.3 Example (1)

PENNSTATE Duty College of Science

 Example - Find the eigenvalues of matrix A and a basis for each eigenspace. Eigenvalues are $\lambda = 3, 3, 4$ [3].[3]? Basis for eigenspace associated with 2=4 is PENNSTATE Bliefs Colle

5.3 Example (2)

5.3 Example (3)

6.1

Length of vector x ||x|| = $sqrt(x1^2+x2^2)$ Length fo vector **x** in RR² $||\mathbf{x}|| = \operatorname{sqrt}(\mathbf{x} \cdot$ X)

 $\mathbf{u} = \mathbf{v}/||\mathbf{v}||$ Two vectors **u** & **v** in RRⁿ, ||u - v||

the distance between u & v Two vectors u & v are

 $||u+v||^2 = ||u||^2$ $+||v||^{2}$ orthogonal if and only if $\mathbf{u} \cdot \mathbf{v} = 0$

The distance from y to the line ||z|| = ||y|through u & the origin - y-hat||

6.2 Example (1)

6.2

The Unit Vector

 \bullet Example 1 - Determine if $\{u_1,u_2,u_3\}$ is an orthogonal basis for \mathbb{R}^3 Check if the to and the are of → They are all nonsero. → Check orthogonality yes, {vi, v2, v3 } forms an orthodo basis for Ra ũ,.ũ₂ = 6-6+0=01 $\vec{u}_1 \cdot \vec{u}_3 = 3-3+0 = 0 \ /$ Ū, Ū, = 2+2-4 =0 √

6.2 Example (2)

By luckystarr

cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 6 of 8.

6.2 Example (3)

6.2 Example (7)

6.3 Example (2)

• Example 1 - Verify that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set, and then find the orthogonal projection of \mathbf{y} onto $\mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. $\mathbf{y} = \begin{bmatrix} 6 \\ 3 \\ -2 \end{bmatrix}, \ \mathbf{u}_1 = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix}$ $\vec{u}_1 \cdot \vec{u}_2 = -|\mathbf{z}_1| - |\mathbf{z}_1| - |\mathbf{z}_2| - |\mathbf{z}_2| - |\mathbf{z}_3| - |\mathbf{z}_$

6.2 Example (4)

6.2 Reference (1)

 $\left\{ \begin{array}{l} \overrightarrow{\nabla_{l}}, \overrightarrow{\nabla_{p}}, \dots, \overrightarrow{\nabla_{p}} \right\} \longrightarrow \left\{ \begin{array}{l} \overrightarrow{\nabla_{l}} \\ ||\overrightarrow{\nabla_{l}}| \end{array}, \begin{array}{l} \overrightarrow{\nabla_{z}} \\ ||\overrightarrow{\nabla_{z}}| \end{array}, \begin{array}{l} \overrightarrow{\nabla_{p}} \\ ||\overrightarrow{\nabla_{p}}| \end{array} \right\}$ orthogonal orthogonal orthogonal

6.3 Example (3)

6.2 Example (5)

• Example 3 - Let $\mathbf{y} = \begin{bmatrix} -3 \\ 9 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

From y to the line through u and the origin.

distance =
$$\|\vec{y} - \hat{y}\|\|$$

$$\hat{y} = (\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{v}})\vec{u} = (\frac{-3 + 18}{1 + 14})\vec{u} = 3\vec{u} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$\hat{y} = (\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{v}})\vec{u} = (\frac{-3 + 18}{1 + 14})\vec{u} = 3\vec{u} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$\hat{y} = (\frac{3}{9}) - (\frac{3}{9}) = (\frac{3}{9}) = [\frac{3}{9}]$$

$$\hat{y} - \hat{y} = (\frac{3}{9}) - (\frac{3}{9}) = (\frac{3}{9}) = (\frac{3}{9})$$

Find $\|\hat{y} - \hat{y}\| = \sqrt{(-6)^2 + (3)^2} = \sqrt{36 + 9} = \sqrt{45} = \boxed{35}$

PROSEUT:

6.3 Example (1.1)

6.2 Reference (2)

6.3 Example (4)

6.2 Example (6)

• Example 1 - Determine if the following set of vectors is orthonormal. If it is only orthogonal, normalize the vectors to produce an orthonormal set.
$$\begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\0 \end{bmatrix}$$
 orthogonal normalized and normalized are orthogonal or orthogonal orthogonal orthogonal orthogonal

6.3 Example (1.2)

6.4

Gram- Schmidt Process Overview	take a given set of vectors & transform them into a set of orthogonal or orthon- ormal vectors
Given x1 & x2, produce v1 & v2 where the v's are perp. to each other	(1) Let v1=x1 (2) Find v2; v2=x2 - x2hat
x2 hat	(x2•v1)/(v1•v1) * v1

By **luckystarr** cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 7 of 8.

6.4 (cont)

Orthogonal {v1,v2,...,vn}

Basis

Orthonormal $\{v1/||v1||,\,v2/\,||v2||,...,$

Basis vn/||vn||

6.4 Reference (1)

6.4 Example (1)

Example - Use the Gram-Schmidt process to produce an orthogonal

7.1

A square matrix where A^T=A Symmetric Matrix

If A is a symmetric

Matrix

then eigenvectors associated w/ distinct eigenvalues are orthogonal

If a matrix is symmetrical, it has an orthogonal & orthonormal basis of vectors

7.1 (cont)

Orthogonal matrix is a square matrix w/ orthonormal columns

- (1) Matrix is square
- (2) Columns are orthogonal

(3) Columns are unit vectors

If Matrix P has orthonormal columns

 $P^{T}P=I$

If P is a nxn orthogonal matrix

 $P^{T}=P^{-1}$

A=PDP^T

A must be symmetric, P

must be

normalized

7.1 Reference (1)

4. The Spectral Theorem

- The spectral theorem for symmetric matrices An $n \times n$ symmetric matrix A has the following properties:
- (a) A has n real eigenvalues, counting multiplicities (b) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ (c) The eigenspaces are mutually orthogonal eigenvectors corresponding to different eigenvalues are orthogonal (d) A is orthogonally diagonalizable
- Note: A symmetric matrix is always orthogonally diagonalizable but an orthogonal matrix is not necessarily orthogonally diagonalizable.

7.1 Example (1)

• Example 2 - Determine if the following matrix is orthogonal. If it is orthogonal, find its inverse.

- orthogonal normalised » | V, || = V | +4+4 = 3 \$

7.1 Example (2.1)

Example 2 - Orthogonally diagonalize the following matrix, giving an orthogonal matrix P and a diagonal matrix D. Note: The eigenvalue for this matrix are 25, 3 and -50.

By luckystarr

cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 8 of 8.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!

7.1 Example (2.2)