

1.1	
A Matrix	row, columns
Coefficients Matrix	Just Left Hand Side
Augmented Matrix	Left and Right Hand Side
Solving Linear Systems	(1) Augmented Matrix(2) Row Operations(3) Solution to LinearSystemThe RHS is the solution
One Solution	Upper triangle with Augmented Matrix
No Solution	Last row is all zeros = RHS number
Infinitely Many Solutions	Last row (including RHS) is all zeros
Inconsistent	Has No Solution

1.2 (cont)	
Reduced Echelon Matrix	(1) The leading entry of each nonzero row is 1(2) Zeros are below AND above each 1
Pivot Position	Location of Matrix that Corresponds to a leading 1 in REF
Pivot Column	Column in Matrix that contains a pivot
To get to EF	down and right
To get to REF	up and left
Free Variables	Variables that don't correspond to pivot columns
Consistent System	Pivot in every Column

• Example 1 - Determine the value(s) of h such that the following

h=-2 - me lost rous so 0=0 if h=-2 and s==#

1.3 Example (2)

1.4	
Vector Equation	x1a1+x2a2+x3a3 =b
Matrix Equation	Ax=b
If A is an m x n	Ax = b has a
matrix the following are all true or all	solution for every ${\bf b}$ in ${\rm RR}^{\rm m}$
false	Every b in RR ^m is a
	lin. combo of
	columns in A
	Columns of A span RR ^m
	Matrix A has a pivot
	in every row (i.e. no
	row of zeros)

Anything in **Bold** means it is a vector.

1.1 Example(1)

• Example - Use matrices to solve the following system of equations $x_1 - 2x_2 + x_3 = 0$ $2x_2 - 8x_3 = 8$ $4x_1 + 5x_2 + 9x_3 = -9$ 0 1 0 16 work down and to the right I. Then up and to the left PENNSTATE BUT Shely Callege of Science

-hRI+RZ A consistent system cannot contain an equation of the form $0=\pm$ but it can contain an equation $0=\pm$ but it can contain $0=\pm$ but it can co

1.3

RR² Set of all vectors with 2 rows

1.4 Example (1)

1.2

Echelon Matrix

- (1) Zero Rows at the bottom
- (2) Leading Entries are down and to the right
- (3) Zeros are below each leading entry

1.3 Example (1)

1.2 Example (1)

By luckystarr cheatography.com/luckystarr/ Published 22nd April, 2018. Last updated 22nd April, 2018. Page 1 of 8.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours!

1.4 Example (2)

• Example - Determine if the columns of matrix A span \mathbb{R}^3 . $A = \begin{bmatrix} 0 & 0 & 4 \\ 0 & -3 & -2 \\ -3 & 9 & -6 \end{bmatrix}$ i.e. Determine if $A\hat{x} = \hat{b}$ has a solution for all \hat{b} .

Reduce $(\hat{a}^1, \hat{d}^1, \hat{a}^2, \hat{d}^2, \hat{b}^1) + \hat{b}$ echelon form. $\begin{bmatrix} 0 & 0 & 4 \\ 0 & -3 & 2 \\ 0 & -3 & 2 \\ 0 & 0 & 0 & 4 \end{bmatrix} \Rightarrow \begin{bmatrix} -3 & 9 & -6 \\ 0 & -3 & 2 \\ 0 & -3 & 2 \end{bmatrix} \xrightarrow{b_B}$

Every row has a pluot so there will be no restrictions on B and there will be a solution for every B.

This means that the columns of A span R3

because there are 3 rows

1.5

Homogeneous Ax = 0

Trivial Solution Ax = 0 if at lease one column is missing a pivot

Determine if homogenous Linear System has a non trivial solution (1) Write asAugmented Matrix

(2) Reduce to EF

(3) Determine if there are any free variables-(column w/o pivot)

(4) If any free variables, than a nontrivial solution exists

(5) Non-Trivial Solution can be found by further reducing to REF and solving for x

If Ax = 0 has one free variable

Than **x** is a line that passes through the origin

If Ax = 0 has two free variables

Than **x** has a plane that passes through the origin

1.5 Example (1)

• Example 1 - Determine if the following linear system has a nontrivial solution and then describe the solution set. Reduce the couponing of the solution set of the solution set. Reduce the couponing of the solution of the

1.5 Example (2)

• Example 2 - Determine if the following linear system has a nontrivial solution and then describe the solution set. $2x_1 + 4x_2 - 6x_3 = 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \\ 2x_1 + 4x_2 - 6x_3 = 0 \\ 4x_1 + 8x_2 - 10x_3 = 0 \\ 2x_1 + 4x_2 - 10x_3 = 0 \\ 2x_2 + 1x_3 - 10x_3 = 0 \\ 2x_3 + 1x_3 - 10x_3 = 0 \\ 2x_3$

1.7

Linear No free Variables, none of the Indepevectors are multiples of each ndence other To check reduce augmented matrix to ind/dep EF and see if there are free variables(ie. every column must have a pivot to be linearly independent) To check if $\mathbf{u} = \mathbf{c} * \mathbf{v}$ multiples find value of c, then it is a multiple therefore linearly dependent Linearly If there are more columns Dependent than rows

1.7 Example (1)

 Example 4 - Determine the values of h that make the following vectors linearly dependent.

vectors linearly dependent.
$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ -6 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 9 \\ h \\ 3 \end{bmatrix}$$
 Reduce $\begin{bmatrix} \sqrt{7}, \sqrt{7}, \sqrt{2}, \sqrt{3} \\ 0 \end{bmatrix}$ to exhelon form and Choose h so that there is a free variable
$$\begin{bmatrix} 3 - \zeta_4 & 0 \\ -1 & 4 & h \\ 1 & -3 & 3 \end{bmatrix} \overset{\circ}{\to} \begin{bmatrix} 1 - 2 & 3 \\ -1 & 4 & h \\ 1 & -3 & 3 \end{bmatrix} \overset{\circ}{\to} \begin{bmatrix} 1 - 2 & 3 \\ 0 & -1 & 0 \end{bmatrix} \overset{\circ}{\to} \begin{bmatrix} 1 - 2 & 3 \\ 0 & -1 & 0 \end{bmatrix} \overset{\circ}{\to} \begin{bmatrix} 1 - 2 & 3 \\ 0 & -7 & hrift \\ 0 & 0 & -7 & hrift \\ 0 & 0 & -7 & hrift \end{bmatrix} \overset{\circ}{\to} \underbrace{\begin{bmatrix} 1 - 2 & 3 \\ 0 & -7 & hrift \\ 0 & 0 & -7 & hrift \\$$

1.8

Every Matrix Transformation is a: ormation T(x) = A(x)If A is m x n Matrix, then the properties are T(u) + T(v) = T(u) + T(v) (2) T(cu) = cT(u) (3) T(0) = 0 (4) T(cu + dv) = cT(u) + dT(v)

1.8 Example (1)

• Example 5 - Suppose
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 be a linear transformation such that $T\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}2\\3\\3\end{bmatrix}$ and $T\left(\begin{bmatrix}1\\1\\-1\end{bmatrix}\right) = \begin{bmatrix}1\\2\end{bmatrix}$. Find $T\left(\begin{bmatrix}4\\0\end{bmatrix}\right)$. Let $\overrightarrow{x} = \begin{bmatrix}6\\0\end{bmatrix}$

① write \overrightarrow{x} as a linear combination of $\begin{bmatrix}1\\1\\0\end{bmatrix}$ and $\begin{bmatrix}1\\1\end{bmatrix}$.
$$\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}2\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}2\\1\end{bmatrix}$$

$$= \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}2\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}2\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1\end{bmatrix} + \begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}1\\1$$

1.8 Example (2)

• Example 5 - Suppose
$$T: \mathbb{R}^2 \to \mathbb{R}^2$$
 be a linear transformation such that $T\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = \begin{bmatrix}2\\3\end{bmatrix}$ and $T\left(\begin{bmatrix}-1\\1\end{bmatrix}\right) = \begin{bmatrix}1\\-2\end{bmatrix}$.

Find $T\left(\begin{bmatrix}4\\0\end{bmatrix}\right)$. Let $\vec{x} = \begin{bmatrix}4\\0\end{bmatrix}$

① write \vec{x} as a linear combination of $\begin{bmatrix}1\\1\end{bmatrix}$ and $\begin{bmatrix}1\\1\end{bmatrix}$.

 $\begin{bmatrix}0\\1\end{bmatrix} = c_1\begin{bmatrix}1\\1\end{bmatrix} + c_2\begin{bmatrix}1\\1\end{bmatrix}$

② Find the transformation of $\vec{x} = c_1 + c_2$.

 $c_2 = c_1 + c_2$.

 $c_3 = c_1 + c_2$.

 $c_4 = c_1 + c_2$.

 $c_4 = c_1 + c_2$.

 $c_5 = c_5 + c_5 = c_5$.

 $c_6 = c_6 + c_5$.

 $c_6 = c_6 + c_6$.

 $c_7 = c_7 + c_7 +$

By **luckystarr** cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 2 of 8. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

1.9

RRⁿ --> RR^m Equation T(x) = Ax = b has a is said to be unique solution or more 'onto' than one solution each row has a pivot RRⁿ --> RR^m Equation T(x) = Ax = b has a unique solution or no is said to be one-to-one solution

each row has a pivot

2.1

Transpose

of A

of A

of Matrix

Addition of Can Add matrices if they have Matrices same # of rows and columns (ie A(3x4) and B(3x4) so you can add them) Multiply by Multiply each entry by scalar Scalar Matrix Must each row of A by each Multipliccolumn of B ation (Ax B) Powers of Can compute powers by if the a Matrix matrix has the same number of columns as rows

2.1 (cont)

Properties of Transpose is n x m (2) $(A^{T})^{T} = A$ (3) $(A + B)^T = A^T + B^T$

2.2

Singular A matrix that is NOT matrix investable Determinate det A = ad - bc of A (2 x 2) Matrix There will never be no If A is invertable & solution or infinitely many solutions to Ax = b(nxn) $(A^{-1})^{-1} = A$ Properties of Invertable (assuming A & B are investable) $(AB)^{-1} = B^{-1} A^{-1}$ Matricies $(A^{T})^{-1} = (A^{-1})^{T}$ [A | I] --> [I | A⁻¹] Use row Finding Inverse operations Matrix STOP when you get a row

(1) if **A** is m x n, then \mathbf{A}^{T}

 $(4) (tA)^{\mathsf{T}} = tA^{\mathsf{T}}$

(5) $(A B)^T = B^T A^T$

of Zeros, it cannot be reduced

2.2 Example (1)

• Example 2 - Let A, B, C and X be $n \times n$ invertible matrices. Solve $B(X+A)^{-1}=C$ for the matrix X. Method 2 Method 1 Get (X+A) -1 by itself. 1st. $B(x+A)^{-1} = C$ $(B(x+A)^{-1})^{-1} = C^{-1}$ $((x+A)^{-1})^{-1}B^{-1} = C^{-1}$ B(x+A) = C B(x+A) = C Note: If you multiply on the left for one side, you must multiply on the left on the (x+AX(B-1)=c-1 XB-1+AB-1=C-1 ... χβ-1 = C-1 - Aβ-1 $\chi \, \mathcal{G}^{-1} \, \mathcal{G} = (\, \mathcal{C}^{-1} - \mathcal{A} \mathcal{B}^{-1} \,) \mathcal{B}$ $\chi = C^{-1}B - AB^{-1}B$ X = C B-A

2.3 Invertable Matrix Theorem

- The Invertible Matrix Theorem Let A be a square n × n matrix Then all of the following statements are equivalent:

 (a) A is an invertible matrix
 (b) A is row equivalent to the $n \times n$ identity matrix I.

- (c) A has n pivots. (d) The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. (e) The columns of A form a linearly independent set. (f) The linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is one-to-one
- (b) The equation $A\mathbf{x} = \mathbf{b}$ has a unique solution for each \mathbf{b} in \mathbb{R}^n .
 (b) The columns of A span \mathbb{R}^n .
 (i) The linear transformation $T(\mathbf{x}) = A\mathbf{x}$ is onto.

 - There is an $n \times n$ matrix C such that CA = I
- (k) There is an $n \times n$ matrix D such that AD = I (l) A^T is invertible.

The above theorem states that if one of these is false, they all must be false. If one is true, then they are all true.

(1) S contains zero A subspace S of RRⁿ is a vector subspace is S(2) If u & v are in S, then satisfies: u + v is also in S (3) If r is a real # & \mathbf{u} is in S, then ru is also in S

Subspace RR³

Any Plane that Passes through the origin forms a subspace RR³ Any set that contains nonlinear terms will NOT form a subspace

RR³

Null Space (Nul To determine in **u** is in the Nul(A), check if: Au

If yes --> then u is in the

Nullspace

By luckystarr

cheatography.com/luckystarr/

row 1 of A becomes column 1

row 2 of A becomes column 2

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 3 of 8.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish

2.8 Example (1)

 Example 1 - Given the following matrix A and an echelon form of A, find a basis for Col A.

$$A = \begin{bmatrix} 2 & -4 & 7 & 2 \\ 3 & -6 & 6 & -6 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 & \boxed{3} & 6 \\ 0 & 0 & 0 & \boxed{3} & 6 \end{bmatrix}$$
pivot columns = columns | and 3.
basis for Col A = pivot columns of A (echelon form of A)
$$basis for Col A = \begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}, \begin{bmatrix} 7 \\ 1 \\ 2 \end{bmatrix}$$

$$Col A = C_1 \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix} + C_2 \begin{bmatrix} 7 \\ 1 \\ 2 \end{bmatrix}$$

2.8 Example (2)

• Example 2 - Given the following matrix A and an echelon form of A, find a basis for Nul A. $A = \begin{bmatrix} 3 & -6 & 9 & 0 \\ 2 & -4 & 7 & 2 \\ 3 & -6 & 6 & -6 \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Reduce $\begin{bmatrix} A & 1 & 0 \\ 0 & 0 & 3 & 6 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 5 & 4 \\ 0 & 0 &$

2.9

Dimension of # of vectors in any basis; it a non-zero is the # of linearly indepeSubspace ndent vectors

Dimension of a zero
Subspace

Dimension of # of pi

of pivot columns

a Column Space

Dimension of # of free variables in the

a Null Space solution Ax=0

Rank of a Matrix # of pivot columns

The Rank
Theorem

Matrix A has *n* columns: rank A (# pivots) + dim Nul

A (# free var.) = n

dim = dimension; var. = variable

2.9 Refrence

(1) Det(A) not

the multiplic-

ation down

the diagonals

3.1

Calculating Determinant of

Matrix A is another way to =0. then tell if a linear system of Ax=b has a equations has a solution unique solution (2) Det(A) =0. then Ax=b has no solutions or inf many A⁻¹ exist If Ax not= 0 A⁻¹ Does If Ax = 0NOT exist Cofactor Expansion Use row/column w/ most zeros If Matrix A has an upper or The det(A) is

3.1 Reference (1)

lower triangle of zeros

• Let A be an $n \times n$ matrix (or here $a \ 3x3 \ matrix$) • Let A be an $n \times n$ matrix (or here $a \ 3x3 \ matrix$) $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ • The determinate of matrix A is given as follows: $\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + a_{13} \det A_{13}$ $\det A_{11} = a_{22}a_{33} - a_{23}a_{32} = \begin{bmatrix} a_{22} \ a_{23} \ a_$

3.1 Example (1)

3.1 Reference (2)

3.1 Example (2)

3.2

Determ-

inate added to another row to

Property produce Matrix B, then det(B)
1 =det(A)

Determ- If 2 rows of A are interchanged to produce B, then det(B)=-d
Property et(A)

2

If a multiple of 1 row of A is

Determ- If one row of A is multiplied to inate produce B, then det(B)=k*det(A)

Property

3

C

By luckystarr

cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 4 of 8. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish
Yours!

3.2 (cont)

 $(1) \det(A^T) =$ Assuming both A & B are n x n Matrices det(A) $(2) \det(AB) =$ det(A)*det(B) (3) $\det(A^{-1}) =$ 1/det(A) (4) $det(cA) = c^n$ det(A) $(5) \det(A^r) =$

(detA)^r

Can be used to find the solution

to a linear system of equations

Ax=b when A is an investable

Let A be an n x n invertible

matrix. For any b in RRⁿ, the

unique solution x of Ax=b has

xi = detAi(b)/det(A) i = 1,2,...n

square matrix

entries given by

5.1

Au=λu A is an nxn matrix. A nonzero vector u is an eigenvector of A if there exists such a scalar λ То reduce [(A-λI)|0] to echelon determine if form and see if it has any λ is an free variables. yes -> λ is Eigenvalue eigenvalue

> no -> λ is not eigenvalue $Ax = \lambda x$

determine if given vector is an eigenvector

Eigenspace

of A =

То

Nullspace of (A-λI)

Eigenvalues of triangular Matrix

entries along diagonal *you CANNOT row reduce a matrix to find its eigenvalues

Ai(b)

3.3 Example (1)

Cramer's

Rule

Def. of

Rule

Cramer's

3.3 AKA Cramer's Rule

is the matrix A w/ column i replaced w/ vector b

5.1 Example (1)

• Example 2 (3x3 Example)
Is $\lambda=1$ an eigenvalue of $A=\begin{bmatrix} 4 & -2 & 3 \\ 0 & -1 & 3 \\ -1 & 2 & -2 \end{bmatrix}$? Why or why not?
Also, find the corresponding eigenvector. Check if $[(A-\lambda X) \vec{0}]$ has a non-thivial solution (free variable)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$x_3 = 3/4 x_3$ $x_3 = +ree var$
X3 X3 \(\frac{1}{2}\) = \(\begin{picture}{0}{3}\end{picture}\) PENNSDATE PENNSDATE PENNSDATE
Chapse=2 23- 8, 2 300

5.1 Example (2)

\$ is not an eigenvector.

5.1 Example (3)

5.2

then (A-λI)x=0 will have a If λ is an nontrivial solution eigenvalue of a Matrix

nontrivial solution

if det(A-λI)=0 (Characteristic Equation)

will exist

(1) The # 0 is NOT an λ of A

A is nxn Matrix. A is

(2) The det(A) is not zero

invertible if and only if

Similar Matrices If nxn Matrices A and B are similar, then they have the same characteristic polynomial (same λ) with same multiplicities

By luckystarr

cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 5 of 8.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours!

5.2 Example (1)

• Example 1 - Find the eigenvalues of the following matrix and state their multiplicity: $A = \begin{bmatrix} 9 & -2 \\ 2 & 5 \end{bmatrix}$ de+(A - X T) = 0 $\begin{vmatrix} 9 - \lambda & -2 \\ 2 & 5 - \lambda \end{vmatrix} = 0$ (9 - X)5 - X) + 4 = 0 (2 - X)5 - X) + 4 = 0 (3 - X)5 - X) + 4 = 0 (3 - X)5 - X) + 4 = 0 (3 - X)5 - X)5 - X (3 - X)5 - X (3 - X)5 - X (4 - X)5 - X (3 - X)5 - X (4 - X)5 - X (4 - X)5 - X (4 - X)5 - X (5 - X)5 - X (7 - X

5.3

form

matrix

A matrix A=PDP⁻¹
A written
in
diagonal

Power of A^k = Diagonal matrix and #'s on Matrix diagonal get raised to the k

Determining if Matrix is Diagonalizable

 $\begin{array}{lll} \lambda \text{ of a} & \text{n distinct (or real) } \lambda \text{ then matrix} \\ \text{nxn} & \text{is diagonalizable} \\ \text{matrix} & \text{less than n } \lambda, \text{it may or may not} \\ \text{be diagonalizable; it will be if \#} \\ & \text{of linearly dependent eigenv-} \end{array}$

ectors = n

eigenvectors of inlinearly independent eigenvectors of ectors, then diagonalizable
nxn less than n linearly independent

eigenvectors, then matrix is NOT diagonlizable

D matrix w/ λ down diagonal

5.3 (cont)

P columns of P have linearly n linearly independent eigenvectors
 Finding solve A-λl and plug in the λ
 P values. Reduce to EF, solve for

x, & find eigenvector

5.3 Example (1)

• Example - Find the eigenvalues of matrix A and a basis for each eigenspace. $A = \begin{bmatrix} 3 & 0 & 0 \\ -3 & 4 & 9 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 & -1 \\ 0 & 1 & -3 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 3 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ -3 & 1 & 9 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ -3 & 1 & 9 \\ -1 & 0 & 3 \end{bmatrix}$ Eigenvalues are in matrix D.

Bosis for eigenspace associated with D.

5.3 Example (2)

5.3 Example (3)

6.1

Length of vector \mathbf{x} $||\mathbf{x}|| =$ $\operatorname{sqrt}(\mathbf{x}1^2 + \mathbf{x}2^2)$ Length fo vector \mathbf{x} in RR² $||\mathbf{x}|| = \operatorname{sqrt}(\mathbf{x} \cdot \mathbf{x})$

 $\mathbf{u} = \mathbf{v}/||\mathbf{v}||$

Two vectors $\mathbf{u} \& \mathbf{v}$ in RR^n , $||\mathbf{u} - \mathbf{v}||$

the distance between $\mathbf{u} \& \mathbf{v}$ Two vectors $\mathbf{u} \& \mathbf{v}$ are $||\mathbf{u}+\mathbf{v}||^2$

Two vectors $\mathbf{u} \& \mathbf{v}$ are $||\mathbf{u}+\mathbf{v}||^2 = ||\mathbf{u}||^2$ orthogonal if and only if $+||\mathbf{v}||^2$ $\mathbf{u} \cdot \mathbf{v} = 0$

6.2

The distance from y to the line ||z|| = ||y||through u & the origin - y-hat||

6.2 Example (1)

The Unit Vector

• Example 1 - Determine if $\{u_1, u_2, u_3\}$ is an orthogonal basis for \mathbb{R}^3 . $u_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}, \ u_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}, \ u_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$ Check if \vec{U}_1, \vec{U}_2 and \vec{U}_3 are orthogonal and non-sero. $\rightarrow \text{They are all non-sero.}$ $\rightarrow \text{Check orthogonality}$ $\vec{U}_1, \vec{U}_2 = (G-U+O=O)$ $\vec{U}_1, \vec{U}_3 = 3 \cdot 3 + O = O$ $\vec{U}_3, \vec{U}_3 = 2 \cdot 2 \cdot 4 = O$ because each \vec{U}_3 has 3 roots.

6.2 Example (2)

• Example 2 - Write \mathbf{x} as a linear combination of $\mathbf{u}_1, \mathbf{u}_2,$ and \mathbf{u}_3 . $\mathbf{x} = \begin{bmatrix} -3 \\ -3 \end{bmatrix}, \ \mathbf{u}_1 \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \ \mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$ Note that the $\mathbf{u}^1 \leq \mathbf{u}^2 \leq \mathbf{u}$

By luckystarr

cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 6 of 8. Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

Cheatography

Penn State: Math 220 Cheat Sheet by luckystarr via cheatography.com/59106/cs/15528/

6.2 Example (3)

6.2 Example (7)

6.3 Example (2)

• Example 1 - Verify that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal set, and then find the orthogonal projection of \mathbf{y} onto $\mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$. $\mathbf{y} = \begin{bmatrix} 6 \\ 3 \\ -2 \end{bmatrix}, \ \mathbf{u}_1 = \begin{bmatrix} 3 \\ 4 \\ 0 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} -4 \\ 3 \\ 0 \end{bmatrix}$ $\vec{u}_1 \cdot \vec{u}_2 = -|\mathbf{z}_1| - |\mathbf{z}_1| - |\mathbf{z}_2| - |\mathbf{z}_2| - |\mathbf{z}_3| - |\mathbf{z}_$

6.2 Example (4)

6.2 Reference (1)

 $\left\{\overrightarrow{v}_{1},\overrightarrow{v}_{2},...,\overrightarrow{v}_{p}\right\} \rightarrow \left\{\frac{\overrightarrow{v}_{1}}{\|\overrightarrow{q}\|},\frac{\overrightarrow{v}_{2}}{\|\overrightarrow{q}\|},...,\frac{\overrightarrow{v}_{p}}{\|\overrightarrow{q}_{p}\|}\right\}$

6.3 Example (3)

6.2 Example (5)

• Example 3 - Let $\mathbf{y} = \begin{bmatrix} -3 \\ 9 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line through \mathbf{u} and the origin.

from y to the line through u and the origin.

$$distance = \| \vec{\gamma} - \hat{y} \|$$

$$\hat{y} = \left(\frac{\vec{y}}{\vec{u} \cdot \vec{u}} \right) \vec{u} = \left(\frac{-3 + 18}{1 + 4} \right) \vec{u} = 3 \vec{u} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$\hat{y} = \left(\frac{\vec{y}}{\vec{u} \cdot \vec{u}} \right) \vec{u} = \left(\frac{-3 + 18}{1 + 4} \right) \vec{u} = 3 \vec{u} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$$

$$\hat{y} = \hat{y} - \hat{y} = \begin{bmatrix} -3 \\ 9 \end{bmatrix} - \begin{bmatrix} 3 \\ 6 \end{bmatrix} = \begin{bmatrix} -6 \\ 5 \end{bmatrix}$$

$$\hat{y} = \hat{y} + \hat{y} = \hat{$$

6.3 Example (1.1)

6.2 Reference (2)

6.3 Example (4)

6.2 Example (6)

6.3 Example (1.2)

6.4

Gram- Schmidt take a given set of vectors & transform them into a set of orthogonal or orthonormal vectors Given x1 & x2, (1) Let v1=x1 produce v1 & v2 (2) Find v2; v2=x2 - where the v's are perp. to each other x2 hat (x2•v1)/(v1•v1) * v1		
produce v1 & v2 (2) Find v2; v2=x2 - where the v's are x2hat perp. to each other	Process	vectors & transform them into a set of orthogonal or orthon-
x2 hat (x2•v1)/(v1•v1) * v1	produce v1 & v2 where the v's are perp. to each	(2) Find v2 ; v2=x2 -
	x2 hat	(x2•v1)/(v1•v1) * v1

By **luckystarr**Published 22nd April, 2018.

cheatography.com/luckystarr/
Last updated 22nd April, 2018.

Page 7 of 8.

Sponsored by **ApolloPad.com**Everyone has a novel in them. Finish Yours!

6.4 (cont)

Orthogonal {v1,v2,...,vn}

Basis

Orthonormal $\{v1/||v1||,\,v2/\,||v2||,...,$

Basis vn/||vn||

6.4 Reference (1)

6.4 Example (1)

Example - Use the Gram-Schmidt process to produce an orthogonal

7.1

A square matrix where A^T=A Symmetric Matrix

If A is a symmetric Matrix

then eigenvectors associated w/ distinct eigenvalues are orthogonal

If a matrix is symmetrical, it has an orthogonal & orthonormal basis of vectors

7.1 (cont)

Orthogonal matrix is a square matrix w/ orthonormal columns

- (1) Matrix is square
- (2) Columns are orthogonal

7.1 Example (2.2)

(3) Columns are unit vectors

If Matrix P has orthonormal columns

 $P^{T}P=I$

If P is a nxn orthogonal

 $P^{T}=P^{-1}$

matrix

A=PDP^T

A must be symmetric, P

must be

normalized

7.1 Reference (1)

4. The Spectral Theorem

- The spectral theorem for symmetric matrices An $n \times n$ symmetric matrix A has the following properties:
- (a) A has n real eigenvalues, counting multiplicities (b) The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ (c) The eigenspaces are mutually orthogonal eigenvectors corresponding to different eigenvalues are orthogonal (d) A is orthogonally diagonalizable

- Note: A symmetric matrix is always orthogonally diagonalizable but an orthogonal matrix is not necessarily orthogonally diagonalizable.

7.1 Example (1)

• Example 2 - Determine if the following matrix is orthogonal. If it is orthogonal, find its inverse.

- orthogonal normalised

7.1 Example (2.1)

Example 2 - Orthogonally diagonalize the following matrix, giving an orthogonal matrix P and a diagonal matrix D. Note: The eigenvalue for this matrix are 25, 3 and -50.

By luckystarr

cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 8 of 8.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours!

