1.1	
A Matrix	row, columns
Coefficients Matrix	Just Left Hand Side
Augmented Matrix	Left and Right Hand Side
Solving Linear Systems	 Augmented Matrix Row Operations Solution to Linear System The RHS is the solution
One Solution	Upper triangle with Augmented Matrix
No Solution	Last row is all zeros = RHS number
Infinitely Many Solutions	Last row (including RHS) is all zeros
Inconsistent	Has No Solution

1.1 Example(1)

1.2	
Echelon	(1) Zero Rows at the bottom
Matrix	(2) Leading Entries are down
	and to the right
	(3) Zeros are below each
	leading entry

Penn State: Math 220 Cheat Sheet by luckystarr via cheatography.com/59106/cs/15528/

1.2 (cont)	
Reduced Echelon Matrix	(1) The leading entry of each nonzero row is 1(2) Zeros are below AND above each 1
Pivot Position	Location of Matrix that Corresponds to a leading 1 in REF
Pivot Column	Column in Matrix that contains a pivot
To get to EF	down and right
To get to REF	up and left
Free Variables	Variables that don't correspond to pivot columns
Consistent System	Pivot in every Column

1.2 Example (1)

```
• Example 1 - Determine the value(s) of h such that the following matrix is the augmented matrix of a consistent linear system.

\begin{bmatrix} 1 & -3 & 1 \\ h & 6 & -2 \end{bmatrix}
Treduce the outgoinerhead for R = \frac{1}{2} + \frac
```

1.3

RR² Set of all vectors with 2 rows

1.3 Example (1)

1.3 Example (2)

Example 1
$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -2 \end{bmatrix} \begin{bmatrix} h \end{bmatrix}$
Let $\mathbf{a_1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\mathbf{a_2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} -3 \\ -3 \end{bmatrix}$
For what value(s) of h is b in the plane spanned by a_1 and a_2 ?
5 will be in the plane spanned by of, and a if 5 can
be written as a linear combination of \vec{a}_1 and $\vec{\sigma}_2$.
Reduce [a, a, b] to echelan form to determine what value(s)
of h will make the system consistent.
[1-2]h] [1-2]h] [1-2]h]
$01 -3 \rightarrow 01 -3 \rightarrow 01 -3 \rightarrow 01 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 $
ariths -3K2+K3 will be consistent it 2nt4=0
2h=-4
When h=-2, b is in the plane h=-2
spanned by a una uz.

1.4	
Vector Equation	x1 a1 +x2 a2 +x3 a3
	=b
Matrix Equation	Ax=b
If A is an m x n	A x = b has a
matrix the following	solution for every ${\bf b}$
are all true or all	in RR ^m
false	Every b in RR ^m is a
	lin. combo of
	columns in A
	Columns of A span
	RR ^m
	Matrix A has a pivot
	in every row (i.e. no
	row of zeros)

Anything in **Bold** means it is a vector.

1.4 Example (1)

By **luckystarr** cheatography.com/luckystarr/ Published 22nd April, 2018. Last updated 22nd April, 2018. Page 1 of 8.

Penn State: Math 220 Cheat Sheet by luckystarr via cheatography.com/59106/cs/15528/

1.4 Example (2)

1.5

• Example - Determine if the columns of matrix A span \mathbb{R}^3 .
[0 0 4] ie. Determine if $A\vec{x} = \vec{b}$ has a solution
$A = \begin{bmatrix} 0 & -3 & -2 \\ -3 & 9 & -6 \end{bmatrix} \qquad \begin{array}{c} \text{for all b} \\ \text{Reduce } [\vec{a}, \vec{a}_2 \vec{a}_3 \vec{b}] + eche[an] \\ \text{form.} \end{array}$
$ \begin{bmatrix} 0 & 0 & 4 \\ 0 & -3 & -2 \\ -3 & 0 & -6 \\ -3 & 0 & -6 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} -3 & 9 & -6 \\ 0 & -3 & -2 \\ 0 & 0 & 4 \\ 0 & -6 & -6 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} -3 & 9 & -6 \\ 0 & -3 & -2 \\ 0 & 0 & 4 \\ -5 & -6 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} -3 & 9 & -6 \\ 0 & -3 & -2 \\ 0 & -6 & -6 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} -3 & 9 & -6 \\ 0 & -3 & -2 \\ 0 & -6 & -6 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} -3 & 9 & -6 \\ 0 & -3 & -2 \\ 0 & -6 & -6 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} -3 & 9 & -6 \\ 0 & -3 & -2 \\ 0 & -6 & -6 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} -3 & 9 & -6 \\ 0 & -3 & -2 \\ 0 & -6 & -6 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} -3 & 9 & -6 \\ 0 & -3 & -2 \\ 0 & -6 & -6 \end{bmatrix} \xrightarrow{\rightarrow} \begin{bmatrix} -3 & 9 & -6 \\ 0 & -3 & -2 \\ 0 & -6 & -6 \\ 0 & -5 & -2 \\ 0 & -6 & -6 \\ $
Every row has a pluct so there will be no restrictions on 15 and there will be a solution for every 15.
This means that the columns of I span R3
because there
in A.

Homogeneous	Ax = 0
Trivial Solution	A x = 0 if at lease one column is missing a pivot
Determine if homogenous Linear System has a non trivial solution	 (1) Write as Augmented Matrix (2) Reduce to EF (3) Determine if there are any free variables- (column w/o pivot) (4) If any free variables, than a non-trivial solution exists (5) Non-Trivial Solution can be found by further reducing to REF and solving for x
If A x = 0 has one free variable	Than x is a line that passes through the origin
If A x = 0 has two free variables	Than x has a plane that passes through the origin

1.5 Example (2)

```
• Example 2 - Determine if the following linear system has a nontrivial solution and then describe the solution set.

2x_1 + 4x_2 - 6x_3 = 0
4x_1 + 8x_2 - 10x_3 = 0
2x_4 - 4x_6 = 0
4x_1 + 8x_6 - 10x_3 = 0
2x_4 - 4x_6 = 0
4x_1 - 4x_6 = 0
5x_6 - 1x_6 = 0
7x_1 - 4x_2 - 6x_6 = 0
7x_1 - 4x_2 - 6x_1 = 0
```

1.7 Linear No free Variables, none of the Indepevectors are multiples of each ndence other To check reduce augmented matrix to ind/dep EF and see if there are free variables(ie. every column must have a pivot to be linearly independent) To check if **u** = c * **v** multiples find value of c, then it is a multiple therefore linearly dependent Linearly If there are more columns Dependent than rows

1.7 Example (1)

1.8	
Every Matrix Transform- ation is a:	Linear Transf- ormation
T(x) =	A(x)
If A is m x n Matrix, then the properties are	(1) $T(u + v) =$ T(u) + T(v) (2) $T(cu) = cT(u)$ (3) $T(0) = 0$ (4) $T(cu + dv) =$ cT(u) + dT(v)

1.8 Example (1)

1.8 Example (2)

By luckystarr

cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 2 of 8. Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours! https://apollopad.com

Penn State: Math 220 Cheat Sheet by luckystarr via cheatography.com/59106/cs/15528/

1.9	
RR ⁿ > RR ⁿ is said to be 'onto'	ⁿ Equation T(x) =Ax=b has a unique solution or more than one solution each row has a pivot
RR ⁿ > RR ⁿ is said to be one-to-one	ⁿ Equation T(x) =Ax=b has a unique solution or no solution each row has a pivot
2.1	
Addition of Matrices	Can Add matrices if they have same # of rows and columns (ie A (3x4) and B (3x4) so you can add them)
Multiply by Scalar	Multiply each entry by scalar
Matrix Multiplic- ation (A x B)	Must each row of A by each column of B
Powers of a Matrix	Can compute powers by if the matrix has the same number of columns as rows
Transpose of Matrix	row 1 of A becomes column 1 of A row 2 of A becomes column 2 of A

2.1 (cont) Properti Transpo

ies of	(1) if A is m x n, then A ^T
ose	is n x m
	$(2) (\mathbf{A}^{T})^{T} = \mathbf{A}$
	(3) $(A + B)^{T} = A^{T} + B^{T}$
	$(4) (t\mathbf{A})^{T} = t\mathbf{A}^{T}$
	$(5) (\mathbf{A} \mathbf{B})^{T} = \mathbf{B}^{T} \mathbf{A}^{T}$

2.2 Singular A matrix that is NOT matrix investable Determinate det A = ad - bc of A (2 x 2) Matrix If A is There will never be no invertable & solution or infinitely many solutions to Ax = b(nxn) $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$ Properties of Invertable (assuming A & B are investable) (AB)⁻¹ = B⁻¹ A⁻¹ Matricies $(A^{T})^{-1} = (A^{-1})^{T}$ [A | I] --> [I | A⁻¹] Use row Finding Inverse operations STOP when you get a row Matrix of Zeros, it cannot be reduced

2.2 Example (1)

```
• Example 2 - Let A, B, C and X be n \times n invertible matrices.
Solve B(X + A)^{-1} = C for the matrix X.
\begin{array}{c} \underline{\mathsf{Method } I} \\ \mathbf{Set} (X+A)^{-1} \text{ by itself 1st.} \\ \mathbf{B}(X+A)^{-1} = \mathbf{C} \\ \mathbf{B}^{-1}\mathbf{S}(X+A)^{-1} = \mathbf{B}^{-1}\mathbf{C} \\ \mathbf{C}(X+A)^{-1} = \mathbf{B}^{-1}\mathbf{C} \end{array}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Method 2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  \frac{f(x+A)^{-1} = C}{D(x+A)^{-1} - C} = C^{-1} - AB^{-1} = C^{-1} + AB
        \begin{array}{l} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        χ 0-' G = ( C-' - AB'')B
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             x=c"B-AB"0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   X = C B-A
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               NSTATE
BID Doc
```

X = C-B - A

By luckystarr cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 3 of 8.

2.3 Invertable Matrix Theorem

 The Invertible Matrix Theorem - Let A be a square n×n matrix. Then all of the following statements are equivalent: A is an invertible matrix (a) A is an invertible matrix (b) A is row equivalent to the n×n identity matrix I. (c) A has n pivots. (d) The equation Ax = 0 has only the trivial solution. (e) The columns of A form a linearly independent set. (f) The linear transformation T(x) = Ax is one-to-one. (g) The equation Ax = b has a unique solution for each b in Rⁿ. (h) The linear transformation T(x) = Ax is onto. (i) There is an n×n matrix C such that CA = I. (i) A^T is invertible. The above theorem states that if one of these is false, they all must be false. If one is true, then they are all true.		
2.8		
A subspace <i>S</i> of RR ⁿ is a subspace is <i>S</i> satisfies:	 (1) <i>S</i> contains zero vector (2) If u & v are in <i>S</i>, then u + v is also in <i>S</i> (3) If <i>r</i> is a real # & u is in <i>S</i>, then ru is also in <i>S</i> 	
Subspace RR ³	Any Plane that Passes through the origin forms a subspace RR ³ Any set that contains nonlinear terms will NOT form a subspace	

	RR ³
Null Space (Nul	To determine in u is in
A)	the Nul(A), check if: Au
	= 0
	If yes> then \mathbf{u} is in the
	Nullspace

Penn State: Math 220 Cheat Sheet by luckystarr via cheatography.com/59106/cs/15528/

2.8 Example (1)

2.8 Example (2)

2.9

Dimension of a non-zero Subspace	# of vectors in any basis; it is the # of linearly indepe- ndent vectors	
Dimension of a zero Subspace	is Zero	
Dimension of a Column Space	# of pivot columns	
Dimension of a Null Space	# of free variables in the solution A x=0	
Rank of a Matrix	# of pivot columns	
The Rank Theorem	Matrix A has <i>n</i> columns: rank A (# pivots) + dim Nul A (# free var.) = <i>n</i>	
dim = dimension; var. = variable		

2.9 Refrence

3.1

Calculating Determinant of Matrix A is another way to tell if a linear system of equations has a solution	 (1) Det(A) not =0, then Ax=b has a unique solution (2) Det(A) =0, then Ax=b has no solutions or inf many
If Ax not= 0	A ⁻¹ exist
If $Ax = 0$	A ⁻¹ Does NOT exist
Cofactor Expansion	Use row/column w/ most zeros
If Matrix A has an upper or lower triangle of zeros	The det(A) is the multiplic- ation down the diagonals
3.1 Reference (1)	

2. Determinate of a 3 × 3 Matrix • Let A be an n × n matrix (or have a 3x3 matrix) $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ • The determinate of matrix A is given as follows: det A = a_{11} det A_{11} - a_{12} det A_{12} + a_{13} det A_{13} $det A_{11} = a_{22}a_{33} - a_{23}a_{32} = \begin{bmatrix} a_{32} & a_{33} \\ a_{32} & a_{33} \end{bmatrix}$ • This formula utilizes a cofactor expansion across the first row

3.1 Example (1)

3.1 Reference (2)

3.1 Example (2)

3.2

Determ- inate Property 1	If a multiple of 1 row of A is added to another row to produce Matrix B, then det(B)- =det(A)
Determ- inate Property 2	If 2 rows of A are interchanged to produce B, then det(B)=-d- et(A)
Determ- inate Property 3	If one row of A is multiplied to produce B, then det(B)=k*det(A)

By **luckystarr** cheatography.com/luckystarr/ Published 22nd April, 2018. Last updated 22nd April, 2018. Page 4 of 8.

Penn State: Math 220 Cheat Sheet by luckystarr via cheatography.com/59106/cs/15528/

3.2 (cont)			5.1
Assuming both A & B are n x n Matrices		 (1) det(A^T) = det(A) (2) det(AB) = det(A)*det(B) 	Au=)
		(3) $det(A^{-1}) =$ 1/det(A) (4) $det(cA) = c^{n}$ det(A) (5) $det(A^{r}) =$	To dete λ is a eige
3.3 AKA C	ramer's Rule	(detA)	To dete aive
Cramer's Rule	Can be used to a linear sy A x=b when A square matri	l to find the solution vstem of equations A is an investable x	is an ector Eige
Def. of Cramer's Rule	Let A be an i matrix. For a unique soluti entries given xi = detAi(b)/	n x n invertible ny b in RR ⁿ , the ion x of A x=b has h by /det(A) <i>i = 1,2,n</i>	Eige of tri Matr
Ai(b)	is the matrix replaced w/	A w/ column i vector b	5.1 E

3.3 Example (1)

Au=λu	A is an nxn matrix. A nonzero vector u is an eigenvector of A if there exists such a scalar λ
Fo determine if \ is an eigenvalue	reduce [(A- λ I) 0] to echelon form and see if it has any free variables. yes -> λ is Eigenvalue no -> λ is not eigenvalue
Fo determine if given vector s an eigenv- ector	Ax=λx
Eigenspace of A =	Nullspace of (A-λI)
Eigenvalues of triangular Matrix	entries along diagonal *you CANNOT row reduce a matrix to find its eigenv- alues

Example (1)

5.1 Example (2)

5.1 Example (3)

5.2	
lf λ is an eigenvalue of a Matrix A	then (Α-λΙ) x=0 will have a nontrivial solution
A nontrivial solution will exist	if det(A-λI)=0 (Characteristic Equation)
A is nxn Matrix. A is invertible if and only if	(1) The # 0 is NOT an λ of A(2) The det(A) is not zero
Similar Matrices	If nxn Matrices A and B are similar, then they have the same characteristic polynomial (same λ) with same multiplicities

Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!

https://apollopad.com

By luckystarr

cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 5 of 8.

Penn State: Math 220 Cheat Sheet by luckystarr via cheatography.com/59106/cs/15528/

5.2 Example (1)
• Example 1 - Find the eigenvalues of the following matrix and state their multiplicity: $A = \begin{bmatrix} 9 & -2 \\ 2 & 5 \end{bmatrix}$ $de+(A - \lambda T) = 0$ $\begin{vmatrix} 9 - \lambda - 2 \\ 2 & 5 - \lambda \end{vmatrix} = 0$ $(9 - \lambda T \leq -\lambda) = 0$ $(9 - \lambda T \leq -\lambda) = 0$ $(2 - \lambda T \leq -\lambda) = 0$ $(\lambda - T (\lambda - T) = 0$ $\lambda = T, multiplicity T$
5.3
A matrix A=PDP ⁻¹ A written

A written in diagonal form		
Power of Matrix	A ^k = Diagonal matrix and #'s on diagonal get raised to the k	
Determining if Matrix is Diagonalizable		
λ of a nxn matrix	n distinct (or real) λ then matrix is diagonalizable less than n λ , it may or may not be diagonalizable; it will be if # of linearly dependent eigenv- ectors = n	
eigenv- ectors of nxn matrix	n linearly independent eigenv- ectors, then diagonalizable less than n linearly independent eigenvectors, then matrix is NOT diagonlizable	
D	matrix w/ λ down diagonal	

5.3 (cont)		
Ρ	columns of P have linearly n linearly independent eigenvectors	
Finding <i>P</i>	solve A- λ I and plug in the λ values. Reduce to EF, solve for x, & find eigenvector	
5.3 Example (1)		
_		

5.3 Example (2)

• Example 3 - Find mat	rices P and D to diagonalize the matrix
3X3 EXample WHT	
3 eigenvalues but	2 4 6
not enough	$A = \begin{bmatrix} 0 & 2 & 2 \end{bmatrix}$
eigenvectors	0 0 4
D Find D.	
de+ (A- λI)=0	(2) Find T.
12-2 4 6	<u>X=2</u>
0 2-X Z =0	1(A-XI)101-1046
0 0 4-2	00200000
	ro 20 00 ro 10 01
(2+x) 2-x 4 =0	→ 00100 → 0010
0 4-2	[00010] [00010]
$(2-\lambda)(2-\lambda)(4-\lambda) = 0$	×2=0 ~ [x]_[1].
3-204	X3=0 X= 0 = 0 M
1-2,2,4	X = free (0) (0)
D=[200]	Told is NOT ONly I
020	eigenvector, PENNSTATE
[0 0 -7]	puagonauzabic ~ need 2 Strengtone
	101 E 151 151 181 101

-	$sqrt(x1^2+x2^2)$
Length fo vector \mathbf{x} in RR^2	x = sqrt(x • x)
The Unit Vector	u = v/ v
Two vectors u & v in RR ⁿ , the distance between u & v	u - v
Two vectors u & v are orthogonal if and only if	$ u+v ^2 = u ^2$ + $ v ^2$ $u \cdot v = 0$

||**x**|| =

6.2	
The distance from y to the line	z = y
through u & the origin	- v-hatll

6.2 Example (1)

6.2 Example (2)

By luckystarr

cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 6 of 8.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

6.1

Length of vector x

Penn State: Math 220 Cheat Sheet by luckystarr via cheatography.com/59106/cs/15528/

• Example 2- Determine if the following set of vectors is <u>orthonormal</u>. If it is only orthogonal, normalize the vectors to produce an orthonormal

 $\begin{bmatrix} -2/3\\ 1/3\\ 2/3 \end{bmatrix}, \begin{bmatrix} 1/3\\ 2/3\\ 0 \end{bmatrix}$

• We end with the formula for the orthogonal projection of \mathbf{y} onto \underline{L} We end with the formula for the orthogonal program $(p_{1}, p_{2}, p_{3}, p_{3$

 $\left\{ \begin{array}{c} \vec{v}_1, \vec{v}_2, \dots, \vec{v}_p \\ \vec{v}_1 \neq \vec{v}_2 \\ \text{orthogonal} \\ \text{Set} \end{array} \right\} \xrightarrow{\nabla I} \left\{ \begin{array}{c} \vec{v}_1 \\ \vec{v}_1 \neq \vec{v}_2 \\ \vec{v}_2 \neq \vec{v}_2 \\ \vec{v}_1 \neq \vec{v}_2 \\ \vec{v}_2 \end{pmatrix}$

• Example - Assume that $\{u_1, \dots, u_4\}$ is an orthogonal basis for \mathbb{R}^4 . Write x as the sum of two vectors, one in Span $\{u_1, u_2, u_3\}$ and one

 $\vec{\nabla}_{\mathbf{x}} = \begin{bmatrix} 4\\5\\-3\\3 \end{bmatrix}, \ \mathbf{u}_{1} = \begin{bmatrix} -1\\1\\1\\-2 \end{bmatrix}, \ \mathbf{u}_{2} = \begin{bmatrix} -2\\1\\-1\\1 \end{bmatrix}$

Find C1, C2, C3 and C4 by using the fact that the V's are orthogonal.

Find cy list (because it's easier!) $\vec{x} = \vec{v}_1 + \vec{v}_2 = c_1 \vec{u}_1 + c_2 \vec{u}_2 + c_3 \vec{u}_3 + c_4 \vec{u}_4$

To find $\vec{\nabla}_1$, use the fact that $\vec{X} = \vec{\nabla}_1 + \vec{\nabla}_2$

 $\vec{\mathbf{x}} = \vec{\mathbf{v}}_1 \div \vec{\mathbf{v}}_2 = \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \\ -\mathbf{5} \\ \mathbf{a} \end{bmatrix} \div \begin{bmatrix} \mathbf{a} \\ \mathbf{a} \\ -\mathbf{5} \\ \mathbf{a} \end{bmatrix}$

 $\vec{\nabla}_{1} = \vec{X} - \vec{\nabla}_{2} = \begin{bmatrix} 4\\5\\-3\\3 \end{bmatrix} - \begin{bmatrix} 2\\4\\2\\2\\2 \end{bmatrix} = \begin{bmatrix} 2\\-5\\-3\\-3 \end{bmatrix}$

 $\begin{array}{l} \ddots & \ddots & \ddots \\ \overrightarrow{\lambda}, \ \overrightarrow{U}_{4} = c_{1} \overrightarrow{U}_{1} \overrightarrow{y}_{4} + c_{2} \overrightarrow{U}_{2} / \overrightarrow{U}_{4} + c_{3} \overrightarrow{U}_{2} / \overrightarrow{U}_{4} + c_{4} \overrightarrow{U}_{4} \cdot \overrightarrow{U}_{4} \\ \overrightarrow{\lambda}, \ \overrightarrow{U}_{4} = c_{1} \overrightarrow{U}_{1} \overrightarrow{y}_{4} + c_{2} \overrightarrow{U}_{2} / \overrightarrow{U}_{4} + c_{3} \overrightarrow{U}_{2} / \overrightarrow{U}_{4} + c_{4} \overrightarrow{U}_{4} \cdot \overrightarrow{U}_{4} \\ \overrightarrow{U}_{4} - \overrightarrow{U}_{4} - \overrightarrow{U}_{4} \\ \overrightarrow{U}_{4} - \overrightarrow{U}_{4} \\ \overrightarrow{U}_{4} - \overrightarrow{U}_{4} \\ \end{array}$

• Note that $\hat{\mathbf{y}}$ is in Span{u} (because $\hat{\mathbf{y}} = \alpha \vec{u}$, $\alpha \vec{u}$,

thogonal and normalized

NSTATE Rosely Code

 $\begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}$

PENNSTATE

 $= \begin{bmatrix} 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 2 \end{bmatrix}$

OF

 $\begin{array}{c} \text{Orthonormal} \\ \left\{ \overrightarrow{V}_{1}, \overrightarrow{V}_{2} \\ \overrightarrow{V}_{2} \\ \left\{ \overrightarrow{V}_{3} \\ \overrightarrow{V}_{3} \\ \end{array} \right\}' \begin{bmatrix} \sqrt{5} \\ \sqrt$

6.2 Example (7)

1) Check if they are orthogonal

 $\vec{v}_1, \vec{v}_2 = -\vec{2}/q + 2/q + 0 = 0$

(2) Check if they are normalized $\|\vec{\nabla}_{i}\| = \sqrt{\frac{4}{9} + \frac{4}{9} + \frac{4}{9}} = 1$ $\|\vec{\nabla}_{i}\| = \sqrt{\frac{4}{9} + \frac{4}{9}} = \frac{15}{3} \neq 1$

 $\frac{\vec{v}_2}{\|\vec{v}_2\|} = \frac{\vec{v}_2}{\sqrt{3}} = \frac{3}{\sqrt{5}} \vec{v}_2$

6.2 Reference (1)

6.2 Reference (2)

6.3 Example (1.1)

 $\frac{\text{in Span}\{u_4\}}{\overrightarrow{v}_2}$.

6.3 Example (1.2)

orthogonal Set

6.2 Example (4)

6.2 Example (5)

6.2 Example (6)

By luckystarr cheatography.com/luckystarr/

Published 22nd April, 2018. Last updated 22nd April, 2018. Page 7 of 8.

6.3 Example (2)

6.3 Example (3)

6.3 Example (4)

6.4	
Gram- Schmidt Process Overview	take a given set of vectors & transform them into a set of orthogonal or orthon- ormal vectors
Given x1 & x2, produce v1 & v2 where the v's are perp. to each other	 (1) Let v1=x1 (2) Find v2; v2=x2 - x2hat
x2 hat	(x2•v1)/(v1•v1) * v1

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours!

Penn State: Math 220 Cheat Sheet	
by luckystarr via cheatography.com/59106/c	s/15528/

6.4 (cont)	
Orthogonal Basis	{v1,v2,,vn}
Orthonormal Basis	{v1/ v1 , v2/ v2 ,, vn/ vn }

6.4 Reference (1)

6.4 Example (1)

7.1

Symmetric Matrix	A square matrix where A ^T =A
If A is a	then eigenvectors associated
symmetric	w/ distinct eigenvalues are
Matrix	orthogonal
	If a matrix is symmetrical, it
	has an orthogonal & orthon-
	ormal basis of vectors

7.1 (cont)

Orthogonal matrix is a square matrix w/ orthonormal columns	 (1) Matrix is square (2) Columns are orthogonal (3) Columns are unit vectors
If Matrix P has orthon- ormal columns	P ^T P=I
lf P is a nxn orthogonal matrix	P ^T =P ⁻¹
A=PDP ^T	A must be symmetric, P must be normalized

7.1 Example (2.2)

7.1 Reference (1)

7.1 Example (1)

7.1 Example (2.1)

By luckystarr cheatography.com/luckystarr/ Published 22nd April, 2018. Last updated 22nd April, 2018. Page 8 of 8.