\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{lph2727 (lph2727)} \pdfinfo{ /Title (module-1-chemistry-nsw.pdf) /Creator (Cheatography) /Author (lph2727 (lph2727)) /Subject (Module 1 Chemistry (NSW) Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{5564A3} \definecolor{LightBackground}{HTML}{F4F5F9} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Module 1 Chemistry (NSW) Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{lph2727 (lph2727)} via \textcolor{DarkBackground}{\uline{cheatography.com/145972/cs/31496/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}lph2727 (lph2727) \\ \uline{cheatography.com/lph2727} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 8th April, 2022.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Atoms, Elements and Compounds}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Pure substances are made up of one type of {\bf{atom}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{An {\bf{element}} is a pure substance that cannot decompose into simpler substances} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Compounds}} are formed by joining 2 or more elements; they can be broken down into simpler substances} \tn % Row Count 7 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Atoms of the {\bf{same element}} are exactly alike} \tn % Row Count 8 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Atoms cannot be created, destroyed, or divided into smaller particles} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.9908 cm} x{2.9862 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Seperating mixtures}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Sieving}} & Separates based on particle size \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Filtration}} & One substance is a solid, other is a solution or liquid; particle size \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} {\bf{Vaporisation}} & Liquid has a much lower boiling point than the solid \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} {\bf{Distillation}} & Big difference in boiling points \tn % Row Count 10 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{Fractional distillation}} & Significant but small difference in boiling points \tn % Row Count 13 (+ 3) % Row 5 \SetRowColor{white} {\bf{Separating funnel}} & Components are immiscible liquids; different densities \tn % Row Count 16 (+ 3) % Row 6 \SetRowColor{LightBackground} {\bf{Adding a solvent}} & One sunbstance is soluble in the chose solvent, while the others are insoluble \tn % Row Count 20 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.4885 cm} x{2.4885 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Physical vs Chemical Change}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Chemical}} & {\bf{Physical}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} At least one new substance formed & No new substance formed \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} Difficult to reverse (hard to 'unboil' an egg) & Easily reversed (melt a solid; freeze again) \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} Generally large input and output of energy (burn natural gas) & Relatively small energy changes involved (evaporate alcohol, dissolve sugar in water) \tn % Row Count 11 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{In a chemical reaction the starting substances are called {\bf{reactants}} and the substances that are formed are called the {\bf{products}}.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{2.09034 cm} x{2.88666 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{The Periodic Table}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Metals}} are elements that: & are solids at room temperature \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & have a shiny or lustrous appearance \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} & are good conductors of heat and electricity \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} & are malleable and ductile \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Most other elements are called {\bf{non-metals}}} \tn % Row Count 9 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The {\bf{periodic table}} is a chart of the elements arranged so that those with similar properties fall into the same vertical column} \tn % Row Count 12 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The vertical columns are called {\bf{groups}}, They are numbered from 1 to 18.} \tn % Row Count 14 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{The elements in groups 3 to 12 are called {\bf{transition elements}}. The other elements (in group 1, 2 and 13 to 18) are called {\bf{main-group elements}}} \tn % Row Count 17 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The horizontal rows are called {\bf{periods}} and they are numbered 1 to 7} \tn % Row Count 19 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Periodic Table cont.}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lph2727_1649063474_how_to_read_an_element.png}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Periodicity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The trends of the periodic table can be seen clearly in the image above.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The {\bf{screening effect}} is the {\emph{decrease}} in electrostatic force between a nucleus and an outermost electron brought about by completely filled electron shells between the nucleus and the outermost electron.} \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{When an atom {\emph{loses or gains}} an electron it becomes an {\bf{electrically charged species}} because the numbers of {\emph{protons and electrons are no longer in balance}}; becoming {\bf{ions}}} \tn % Row Count 11 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{First ionisation energy}}, IA, of an element is the {\bf{energy required to remove an electron}} from a neutral gaseous atom of the element.} \tn % Row Count 14 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Electronegativity}} of an element is a measure of the {\emph{ability of an atom of that element to attract bonding electrons}} towards itself in compounds.} \tn % Row Count 17 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The {\bf{higher}} the electronegativity the {\bf{stronger the attraction}} of the atom for bonding electrons.} \tn % Row Count 20 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.44333 cm} x{3.53367 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Bohr vs Schr{\"o}dinger}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Bohr}} & Considered electrons as particles orbiting the nucleus \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & Successful in interpreting the hydrogen spectrum \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} & Failed on more complicated ones. \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} {\bf{Schr{\"o}dinger}} & Much more successful in interpreting atomic and molecular properties. \tn % Row Count 9 (+ 3) % Row 4 \SetRowColor{LightBackground} & Showed that electrons move at extremely high speeds {\emph{randomly}} in {\bf{orbitals}} \tn % Row Count 12 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Schr{\"o}dinger equation}} uses wave properties and quantum theory to calculate the {\bf{probability of finding an electron at a particular location}}} \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{{\emph{Planck's quantum theory proposes that in atoms energy is not continuously variable but exists in discrete packages.}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Atoms}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{An {\bf{atom}} is the smallest particle of an element that is still recognisable as that element} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The {\bf{formula of a compound that exists as molecules}} is a combination of symbols of the elements in the compound, with subscripts denoting how many atoms of each element are in the molecule} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{An atom consists of an extremely {\bf{small dense nucleus}} or core, which contains the {\bf{bulk of the mass of the atom}} and carries {\bf{positive electrical charges}}} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{This nucleus is surrounded by an {\bf{electron cloud}} of rapidly moving and extremely light {\bf{negatively charged}} particles.} \tn % Row Count 13 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Atomic number, Z}}, of an element is the {\bf{number of protons}} in the nucleus of an atom of that element.} \tn % Row Count 16 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The {\bf{mass number, A}}, is the number of {\bf{protons plus neutrons in the nucleus}} of an atom of the species concerned. Sometimes called the nucleon number} \tn % Row Count 20 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Number of electrons}} in the electron cloud is {\emph{equal}} to the {\bf{number of protons}} in the nucleus} \tn % Row Count 22 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Isotopes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Isotopes are atoms of one element that have {\bf{different numbers of neutrons in their nuclei}} (although the same number of protons).} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The {\bf{relative abundance}} of an isotope is the {\bf{percentage of that isotope in the naturally occurring element.}}} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Isotopes of one element have the {\bf{same chemical properties}} and very {\bf{similar physical ones.}}} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.59264 cm} x{3.38436 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Radioactivity}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Radioactive isotopes or radioisotopes {\bf{spontaneously}} emit radiation. They are also called {\bf{unstable isotopes}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Radioisotopes emit three types of radiation:} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} {\bf{alpha (α) rays}} & which are helium nuclei \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} {\bf{beta (β) rays}} & which are electrons \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} {\bf{gamma (γ) rays}} & which are a type of electromagnetic radiation like light and X-rays \tn % Row Count 11 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{A {\bf{nuclear equation}} shows the disintegration of a radioisotope into a new nucleus and a helium atom or an electron; the atomic and mass numbers {\bf{must balance}} in nuclear equations.} \tn % Row Count 15 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The {\bf{half-life}} of a radioisotope is the time required for half the atoms in a given sample to undergo radioactive decay.} \tn % Row Count 18 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Half-life is independent of the initial amount of the isotope present.} \tn % Row Count 20 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Spectroscopy}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Electrons in an atom can be given extra energy and so be raised from its {\bf{ground state}} into an {\bf{excited state}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{When electrons in {\bf{excited states {\emph{fall back}} to their ground states}}, {\bf{energy is released}} in the form of {\bf{ultraviolet, visible and infrared radiation}}} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{This radiation can be analysed with a {\bf{spectroscope}}} \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Measuring and studying the emission spectra of elements is called atomic emission spectroscopy.} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Some elements produce {\bf{distinctive flame colours}} because one particular {\bf{electron transition}} occurs much more frequently than any other.} \tn % Row Count 14 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{So a {\bf{flame test}} can also be used to detect their presence in a sample} \tn % Row Count 16 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Periodicity}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lph2727_1649386866_periodic trends.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{0.89586 cm} x{4.08114 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Chemical Bonding}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Ionic}} & Outright transfer of electrons from one atom to another. \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} & Electrostatic attran is between positive and negative ions \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} & Ions are present in ratios, the total \# of positive charges is equal to the total \# negative charges \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} & Formulaes (e.g. NaCl, CaF2 ) specify the ratios in which the ions are present, not the composition of discrete molecules. \tn % Row Count 12 (+ 4) % Row 4 \SetRowColor{LightBackground} & Ionic binary compounds are named positive ion then negative ion. \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} & The positive ion has the same name as the element (e.g. 'sodium', 'calcium') \tn % Row Count 17 (+ 3) % Row 6 \SetRowColor{LightBackground} & Negative ion the ending of the element name is changed to -ide. \tn % Row Count 19 (+ 2) % Row 7 \SetRowColor{white} & High melting and boiling points \tn % Row Count 20 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{A polyatomic ion is an ion formed from two or more atoms joined together.} \tn % Row Count 22 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{p{0.4977 cm} x{4.4793 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Electron Shells and Arrangements}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Electrons orbit (move around) the nucleus in a circle called an {\bf{electron shell.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{These electrons exist in discrete energy levels} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} & 1st shell: holds 2 e- \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} & 2nd shell: holds up to 8 e- \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} & 3rd shell: holds up to 8 e- \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Octet Rule}}: atoms are stable when their outer electron shell holds 8 electrons.} \tn % Row Count 8 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{There are 2 exceptions to the octet rule.} \tn % Row Count 9 (+ 1) % Row 7 \SetRowColor{white} & 1. The cases in which there are fewer than 8 electrons in the outer shell. \tn % Row Count 12 (+ 3) % Row 8 \SetRowColor{LightBackground} & 2. The cases in which there are more than 8 electrons in the outer shell. Exception: H and He. \tn % Row Count 15 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{{\bf{Valence electrons}}: {\bf{electrons in outer most shell}} of an atom that can participate in {\bf{forming chemical bonds}} with other atoms} \tn % Row Count 18 (+ 3) % Row 10 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{Atoms with a relatively {\bf{empty outer shell}} will want to {\bf{give up electrons}}} \tn % Row Count 20 (+ 2) % Row 11 \SetRowColor{white} \mymulticolumn{2}{x{5.377cm}}{Atoms with a relatively {\bf{full outer shel}}l will want to {\bf{gain electrons}} to fill up the outer shell} \tn % Row Count 23 (+ 3) % Row 12 \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The arrangement of electrons in energy levels is called the {\bf{electron configuration}} of the atom.} \tn % Row Count 25 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}--} \SetRowColor{LightBackground} \mymulticolumn{2}{x{5.377cm}}{The 'driving force' behind chemical reactivity is that an atom tends to lose, gain or share electrons in order to achieve the stable electron configuration of the nearby noble gas.} \tn \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Filling energy levels}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lph2727_1649306880_Capture.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Orbitals}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lph2727_1649307610_orbitals.PNG}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Orbitals}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Orbitals}} are a volume of space surrounding the nucleus of an atom through which one or two {\bf{electrons may randomly move.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Each main energy level of an atom (except the first) is made up of a set of energy sublevels called the {\bf{s, p, d and f sublevels.}}} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Each orbital can accommodate a {\bf{maximum of two electrons.}}} \tn % Row Count 8 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Ions}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Ions are atoms with {\bf{extra electrons or missing electrons}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Ions}} are positively or negatively charged particles} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Missing}} electrons results in a {\bf{positive charge}}} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Extra}} electrons results in a {\bf{negative charge}}} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Postive ions are called {\bf{cations}}; negative ions are called {\bf{anions}}} \tn % Row Count 10 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{An {\bf{ionic lattice}} is an orderly array of positive and negative ions} \tn % Row Count 12 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The {\bf{formula of a compound that is made up of ions}} is a combination of symbols of the atoms involved, with subscripts giving the ratio in which the elements are present in the compound (since there are no molecules of ionic compounds).} \tn % Row Count 17 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}