Cheatography

CS 232 Computer Organization Final Cheat Sheet by louielegrand via cheatography.com/27914/cs/8200/

Terminology		Basic Identities			Decoder	Cache
Tera	10 ¹²	Name	AND form	OR form	n data inputs	Component that stores
Giga	10 ⁹	(Law)			D, 2 ⁿ data outputs	data to speed up future
Mega	106	Identity	1A = A	0+A = A		search requests. Cache hit - data can be found
Kilo	10 ³	Null	0A = 0	1+A = 1	\overline{R} $\overline{D_{0}}$ 3 -to-8 decoder	vs Cache miss - data
1 GHz	1x10 ⁹ Hz	Idempotent	AA = A	A+A = A		cannot be found. Hit rate
1 TB	1x10 ¹² Byte	Inverse	AA = 0	A+A = 1		 % of accesses resulting in cache hits. Relatively
1 Byte	8 Bits	Commutativ	AB = BA	A+B = B+A		small due to cost.
Т Буїе	o Dits	е				Locality of reference -
Conversi	ions	Associative	(AB)C =	(A+B)+C =	Other Sequential Circuits	Temporal locality: reuse
Binary	Hex Dec	D	A(BC)	A+(B+C)	Multiplexer	of specific data, and/or resources, within a
1111	0F 15	Distributive	A+BC = (A+B)(A+C)	A(B+C) = AB+AC	Demultiplexer	relatively small time
		Absorption	A(A+B) = A	A + AB = A	Decoder	duration. Spatial locality:
Hex		DeMorgan's	AB = A+B	A+B = AB	Encoder	use of data elements within relatively close
In Hex, each digit		Donnorganio			Priority Encoder	storage locations.
represents 4 binary bits (i.e.		Boolean Concepts				Tradeoff: Larger caches
1111 1111 is FF)		Addition Subtraction			Byte Ordering	have better hit rates but
		1+1 = 10 0-1 = 1 (borrow method)		w method)		longer latency. Small fast caches backed up
2's Complement					to right or right to left. Big-endian: Most	by larger, slower caches.
0111	7	All other operations straightforward.		orward.	significant byte (byte containing most	Multi-level caches:
1000	-8				significant bit) is stored first and following bytes are stored in decreasing significance	check fastest L1 cache first; if it hits, proceeds at
1111	Boolean Concepts II		order. Little-endian is the opposite.	HS. If L1 misses, L2 is		
Logic Gates		Carry out: Carry out of leftmost bit				checked, and so on,
		Overflow: Result too large or small to fit into			Memory Hierarchy	before accessing
AND	AB	bits			In order of increasing access time, storage	external memory
OR	A+B				capacity, and bits you get per dollar spent:	
NOT	A	S-R Latch			Registers; Cache; Main Memory; Magnetic or solid state disk; Tape or Optical Disk.	
NAND	AB	R	+ Q SR	o ō		
NOR	A+B		0 0 1	latch latch		
XOR	A B		1 0	1 0		
XOR Truth Table				0 0		
A B	A XOR B					
0 0	0					
0 1	1					
1 0	1					

1

0

1

By louielegrand

cheatography.com/louielegrand/

Not published yet. Last updated 14th May, 2016. Page 1 of 2.

Sponsored by Readability-Score.com Measure your website readability! https://readability-score.com

Cheatography

CS 232 Computer Organization Final Cheat Sheet by louielegrand via cheatography.com/27914/cs/8200/

Cache Mapping							
Cache type	Hit Ratio	Search speed					
Direct Mapped	Good	Best					
N-Way Set Associat ive	Very good, better as N increases	Good, worse as N increases					
Fully associat ive	Best	Moderate					
Replacement Algorithms							
Optimize management of cache - chooses which items to discard in a full cache							
Each is a tradeoff between latency and hit ratio							
Common: LRU, MRU, RR, 2-way set, Direct-mapped							
Write Policy							

Write-Write-back through Write initially only to Write is done cache; write to main synchron memory postponed ously until cache blocks both to containing data are cache about to be modified/replaced and main mem ADV: ADV: Faster, uses Simpler less memory bandwidth and more reliable, mem is always up-todate

Write Policy (cont)	
DISADV: Write is	DISADV:
slower, every write	More
requires main	complex,
memory access,	must
uses more memory	track
bandwidth	"dirty"
	locations

Mean access time

mean access time = c + (1-h)mc - cache access time h - hit ratio

m - main memory access time

Data Dependencies

(RAW)

WAR

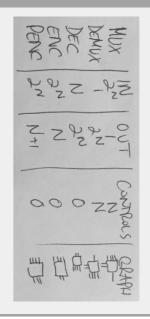
WAW

True data Occurs when an dependency instruction depends on result of previous instruction Occurs when an instruction requires a value that is later updated Occurs when the ordering of instructions will affect the final output value of a variable

RISC					
Emphasis on software					
Single-clock, reduced instruction only					
Register-to-reg ister: "LOAD" and "STORE" are independent instructions					
Low cycles per second, large code sizes					
LOAD LOAD PROD STORE					
Performance equation					
time/program = time/cycle x cycles/instruction x instructions/program					
CISC minimzes instructions per program at cost of cycles per instruction					

RISC reduces cycles per instruction at cost of number of instructions per program

State Machines


Moore Machines: output is a function of the state

Mealy Machines: output is a function of the state and the input

Portion of a machine language that specifies the operation to be performed

Addressing modes Immediate Direct Indirect Reg Direct Reg Indirect Reg Base-Ind Reg Base-Scaled Ind Basic ISA Classes Load/Store Stack Gen Accumu lator Purp Reg 1 or 1+x 0 2 or 3 3 address address

address address

Speedup Calculation

Speedup = $(NT^1)/[K+(N-1)]T$

Where N is # of instructions, T1 is time for stage 1 CPU to complete instruction

K is # of stages for multistage and T is time for step + latch

By louielegrand

cheatography.com/louielegrand/

Not published yet. Last updated 14th May, 2016. Page 2 of 2.

Sponsored by Readability-Score.com Measure your website readability!

https://readability-score.com