Cheatography

CS 232 Computer Organization Final Cheat Sheet by louielegrand via cheatography.com/27914/cs/8200/

Terminology		
Tera	10 ¹²	
Giga	109	
Mega	106	
Kilo	10 ³	
1 GHz	1x10 ⁹ Hz	
1 TB	1x10 ¹² Byte	
1 Byte	8 Bits	

Basic Identities			
Name	AND form	OR form	
(Law)			
Identity	1A = A	0+A = A	
Null	0A = 0	1+A = 1	
Idempotent	AA = A	A+A=A	
Inverse	AA = 0	A+A=1	
Commutativ e	AB = BA	A+B = B+A	
Associative	(AB)C =	(A+B)+C =	

D ₀	n data inputs 2 ⁿ data outputs
D _Z	
N A D	3-to-8 decoder
B B D	
C C D _s	
C C	
D ₇	

	Cache
nputs	Component that stores
outputs	data to speed up future
	search requests. Cache
	hit - data can be found
ecoder	vs Cache miss - data
	cannot be found. Hit rate
	- % of accesses resulting
	in cache hits. Relatively
	small due to cost.
	Locality of reference -
	Temporal locality: reuse

Binary Hex Dec

0F

15

Associative	(AB)C = A(BC)	(A+B)+C = A+(B+C)
Distributive	A+BC = (A+B)(A+C)	A(B+C) = AB+AC
Absorption	A(A+B) = A	A+AB=A
DeMorgan's	AB = A+B	A+B=AB

Other Sequential Circuits Multiplexer Demultiplexer Decoder

nall due to cost. cality of reference emporal locality: reuse of specific data, and/or resources, within a relatively small time duration. Spatial locality: use of data elements within relatively close storage locations. Tradeoff: Larger caches have better hit rates but longer latency. Small

fast caches backed up

Multi-level caches:

by larger, slower caches.

check fastest L1 cache

HS. If L1 misses, L2 is checked, and so on,

before accessing

external memory..

first; if it hits, proceeds at

1111

In Hex, each digit represents 4 binary bits (i.e. 1111 1111 is FF)

Boolean	Concepts	

Addition	Subtraction	
1+1 = 10	0-1 = 1 (borrow method)	

All other operations straightforward.

Byte Ordering

Priority Encoder

Encoder

Bytes in a word can be numbered from left to right or right to left. Big-endian: Most significant byte (byte containing most significant bit) is stored first and following bytes are stored in decreasing significance order. Little-endian is the opposite.

2's Complement		
0111	7	
1000	-8	
1111	-1	

Logic Gates

Boolean Concepts II

Carry out: Carry out of leftmost bit

Overflow: Result too large or small to fit into

Memory Hierarchy

In order of increasing access time, storage capacity, and bits you get per dollar spent: Registers; Cache; Main Memory; Magnetic or solid state disk; Tape or Optical Disk.

AND	АВ
OR	A+B
NOT	Α
NAND	АВ
NOR	A+B
YOR	ΛR

R —	_	_	_	
) > 	S	R	Q	Q
	0	0	latch	latch
\times	0	1	0	1
	1	0	1	0
\Box \rightarrow \overline{a}	1	1	0	0
$s \rightarrow /$				

XOR Truth Table A XOR B

$\overline{}$	Ь	A AOIT D	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

cheatography.com/louielegrand/

Not published yet. Last updated 14th May, 2016. Page 1 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

CS 232 Computer Organization Final Cheat Sheet by louielegrand via cheatography.com/27914/cs/8200/

Cache Mapping			
Cache type	Hit Ratio	Search speed	
Direct Mapped	Good	Best	
N-Way Set Associat ive	Very good, better as N increases	Good, worse as N increases	
Fully associat ive	Best	Moderate	

DISADV: DISADV: Write is slower, every write More requires main complex, memory access, must uses more memory track bandwidth "dirty" locations

Mean access time

mean access time = c + (1-h)m

m - main memory access time

RISC CISC Emphasis on Emphasis on hardware software Includes Single-clock, multi-clock reduced instruction only complex instructions Memory-to-Register-to-reg memory: ister: "LOAD" and "STORE" "LOAD" and "STORE" incorporated independent

instructions

Low cycles per

second, large

code sizes

LOAD LOAD

PROD STORE

Addressing modes
Immediate
Direct
Indirect
Reg Direct
Reg Indirect
Reg Base-Ind
Reg Base-Scaled Ind

Replacement Algorithms

Optimize management of cache chooses which items to discard in a full cache

Each is a tradeoff between latency and hit ratio

Common: LRU, MRU, RR, 2-way set, Direct-mapped

Data	Der	en	ide	nei	29

c - cache access time

h - hit ratio

WAR

WAW

True data	Occurs when an
dependency	instruction
(RAW)	depends on
	result of previous
	instruction

Occurs when an instruction requires a value that is later updated

Occurs when the ordering of instructions will affect the final

output value of a

variable

Reg Base-Scaled Ind					
Basic ISA Classes					
Accumu lator	Stack	Gen Purp Reg	Load/Store		
1 or 1+x	0 address	2 or 3	3 address		

Performance equation

in

instructions

Small code

sizes, high

cycles per

second

MULT

time/program = time/cycle x cycles/instruction x instructions/program

CISC minimzes instructions per program at cost of cycles per instruction

RISC reduces cycles per instruction at cost of number of instructions per program

Penson Denson De
マックス マートララ
- 2-2-5 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z
OO O ZZZ

Write Policy

Write-	Write-back
through	
Write is	Write initially only to
done	cache; write to main
synchron	memory postponed
ously	until cache blocks
both to	containing data are
cache	about to be
and	modified/replaced
main	
mem	
ADV:	ADV: Faster, uses
Simpler	less memory
and	bandwidth
more	
reliable.	

State Machines

Moore Machines: output is a function of the state

Mealy Machines: output is a function of the state and the input

Opcode

Portion of a machine language that specifies the operation to be performed

Speedup Calculation

Speedup = $(NT^1)/[K+(N-1)]T$

Where N is # of instructions, T1 is time for stage 1 CPU to complete instruction

K is # of stages for multistage and T is time for step + latch

mem is

always

up-to-

date

By louielegrand

cheatography.com/louielegrand/

Not published yet. Last updated 14th May, 2016. Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com