\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{lonnieRCH} \pdfinfo{ /Title (photosynthesis.pdf) /Creator (Cheatography) /Author (lonnieRCH) /Subject (Photosynthesis Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Photosynthesis Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{lonnieRCH} via \textcolor{DarkBackground}{\uline{cheatography.com/208046/cs/44930/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}lonnieRCH \\ \uline{cheatography.com/lonnierch} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 14th November, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{3} \begin{tabularx}{5.377cm}{x{1.64241 cm} x{3.33459 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Key Terms}} \tn % Row 0 \SetRowColor{LightBackground} \seqsplit{Photophosphorylation} & {\bf{Synthesis}} of {\bf{ATP}} from {\bf{ADP}} and and {\bf{Pi}} (inorganic phosphate) using {\bf{light energy.}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} Transducers & {\bf{Change}} energy from {\bf{one form}} into {\bf{another}} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} Absorption Spectrum & A graph that shows {\bf{how much light}} energy is {\bf{absorbed}} at {\bf{different wavelengths.}} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} Action Spectrum & A graph that shows the {\bf{rate of photosynthesis}} at {\bf{different wavelength.}} \tn % Row Count 13 (+ 3) % Row 4 \SetRowColor{LightBackground} Antenna Complex & An array of {\bf{protein}} and {\bf{pigment}} molecules in the {\bf{thylakoid membranes}} with {\bf{chlorophyll a}} at the reaction centre. It transfers {\bf{energy}} from {\bf{light}} of a range of {\bf{wavelengths}} to {\bf{chlorophyll a.}} \tn % Row Count 22 (+ 9) % Row 5 \SetRowColor{white} Limiting Factor & A factor that {\bf{limits}} the {\bf{rate}} of a {\bf{physical process}} by being in {\bf{short supply.}} \tn % Row Count 26 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Overview of Photosynthesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The overall equation for photosynthesis is:} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{6CO2 + 6H2) -\textgreater{} C6H12O6 + 6O2} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Photosynthesis involves two stages:} \tn % Row Count 3 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1. {\bf{Light-dependent stage}} where {\bf{light energy}} is {\bf{converted}} into {\bf{chemical energy}} as the {\bf{photolysis}} of water {\bf{releases protons}} and {\bf{electrons}} which {\bf{produce ATP}} via {\bf{photophosphorylation}} and {\bf{reduce}} the {\bf{co-enzyme NADP.}}} \tn % Row Count 9 (+ 6) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{2. {\bf{Light-independent stage}} or {\bf{Calvin cycle}} where {\bf{ATP and NADPH}} from the {\bf{light-dependent reaction}} reduce {\bf{carbon dioxide}} to {\bf{produce glucose.}}} \tn % Row Count 13 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Photosynthesis Summary}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1730991195_photosynthesis summary.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Structure of the leaf}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The leaf is {\bf{adapted}} for {\bf{gas exchange}} and {\bf{photosynthesis}} by having a {\bf{large surface area}} allowing the leaf to {\bf{capture light}}, and having {\bf{pores}} called {\bf{stomata}} through which {\bf{gases diffuse.}}} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Air spaces}} between cells allow for {\bf{carbon dioxide}} to diffuse to the {\bf{photosynthesising cells.}}} \tn % Row Count 8 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The {\bf{highest concentration}} of {\bf{chloroplasts}} is found in the {\bf{palisade mesophyll}} on the leaf's {\bf{upper surface.}}} \tn % Row Count 11 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The {\bf{palisade cell}}s are {\bf{arranged vertically}}, which allows {\bf{more light}} to be absorbed by {\bf{chloroplasts}} than if they were stacked {\bf{horizontally}}, as {\bf{light}} only has to pass through the {\bf{cuticle}}, {\bf{epidermal cells}} and one {\bf{palisade cell wall.}}} \tn % Row Count 17 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Leaf structure}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1730994320_leaf structure.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Chloroplasts as transducers}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The site of {\bf{photosynthesis}} was detected {\bf{by Engelmann in 1887. In his experiment, he shone a }}light{\bf{ through a }}prism{\bf{ to }}separate{\bf{ the }}different wavelengths{\bf{ of light, and }}exposed{\bf{ this to }}a suspension{\bf{ of }}algae{\bf{ with }}evenly distributed{\bf{, motile, }}aerobic bacteria.**} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{After a period of time, he noticed that the {\bf{bacteria congregated}} around the algae exposed to {\bf{blue and red wavelengths.}}} \tn % Row Count 9 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{This was because this {\bf{algae photosynthesised more}} and so {\bf{produced more oxygen}}, attracting the {\bf{motile bacteria.}}} \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Transducers}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1730995502_transducers.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Photosynthetic pigments}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{In flowering plants there are 2 main types of pigments:} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1. {\bf{Chlorophylls}} which {\bf{absorb red and blue-violet regions}} of the spectrum, e.g. {\bf{chlorophyll a}} and {\bf{chlorophyll b.}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{2. {\bf{Carotenoids}} which {\bf{absorb light energy}} from the {\bf{blue-violet region}} of the spectrum, e.g. {\bf{B-carotene}} and {\bf{xanthophylls}}, and act as {\bf{accessory pigments.}}} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The presence of {\bf{several pigments}} allows the plant to {\bf{absorb}} a {\bf{wider range}} of {\bf{wavelengths}} of {\bf{light}} than a {\bf{single pigment.}}} \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Absorption and action spectra}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The {\bf{absorption spectrum}} shows {\bf{how much}} light energy a particular {\bf{pigment}} absorbs at {\bf{different wavelengths}}, for example {\bf{chlorophyll a}} which absorbs {\bf{red and blue-violet}} regions of the spectrum.} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{It {\bf{does not}} indicate whether the {\bf{particular wavelength}} is used in {\bf{photosynthesis.}}} \tn % Row Count 7 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{An {\bf{action spectrum}} shows the {\bf{rate of photosynthesis}} at {\bf{different wavelengths}}, by {\bf{measuring}} the {\bf{mass}} of {\bf{carbohydrate synthesised}} by {\bf{plants.}}} \tn % Row Count 11 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{There is a {\bf{close correlation}} between the {\bf{2.}}} \tn % Row Count 13 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Absorption and action spectra}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1730996810_absorption and action spectrum.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Light Harvesting}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The {\bf{chlorophylls}} and {\bf{accessory pigments}} are found lying in the {\bf{thylakoid membranes}}, grouped into {\bf{structures}} called {\bf{antenna complexes.}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{With the aid of {\bf{special proteins}} associated with these {\bf{pigments}}, {\bf{light energy}} (photons) is funnelled towards the {\bf{reaction centre}} at the base, containing {\bf{chlorophyll a.}}} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{There are 2 types of reaction centre:} \tn % Row Count 9 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{1. {\bf{Photosystem 1}} (PS1) chlorophyll a, with an {\bf{absorption peak}} of {\bf{700nm}}, also called {\bf{P700.}}} \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{2. {\bf{Photosystem 11}} (PS11) chlorophyll a, with an {\bf{absorption peak}} of {\bf{680nm}} also called {\bf{P680.}}} \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Antenna Complex}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1731005038_antenna complex.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Identifying different photo pigments from chloro}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Pigments}} can be {\bf{extracted}} by {\bf{grinding plant material}} in a suitable {\bf{solvent}}, e.g. propanone, and separated by {\bf{paper chromatography.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{By {\bf{dividing}} the {\bf{distance travelled}} by the {\bf{pigment}} by the {\bf{distance travelled}} by the {\bf{solvent}} front, the {\bf{Rf value}} can be {\bf{calculated.}}} \tn % Row Count 7 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Calculating the Rf value}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1731016130_calculating the Rf value.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{The light-dependent stage of photosynthesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Occurs on the {\bf{thylakoid membranes.}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Photophosphorylation}} occurs via {\bf{2 pathways:}}} \tn % Row Count 3 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. {\bf{Non-cyclic}} photophosphorylation, which involves {\bf{both}} photosystems 1 and 11, generating {\bf{2 ATP}} molecules and {\bf{reduced NADP.}}} \tn % Row Count 6 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Photolysis generates {\bf{oxygen.}}} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The {\bf{electrons}} take a {\bf{linear pathway}} which is referred to as the {\bf{'Z scheme'.}}} \tn % Row Count 9 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Non-cyclic photophosphorylation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1731515217_non-cyclic phosphorylation.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Non-cyclic photophosphorylation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. {\bf{Light energy}} (photons) strikes {\bf{chlorophyll}} (PS11) exciting its {\bf{electrons}}, boosting them to a {\bf{higher energy level.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2. {\bf{Electrons}} are {\bf{accepted}} by an {\bf{electron carrier}} in the {\bf{thylakoid membrane.}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. The {\bf{oxidised chlorophyll}} removes {\bf{electrons}} from water, producing {\bf{protons}} and {\bf{oxygen}} (photolysis). This occurs in the {\bf{thylakoid space.}}} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{4. As {\bf{electrons}} pass from {\bf{carrier to carrier}}, electron {\bf{energy is lost}}, which pumps {\bf{protons}} from the {\bf{stroma}} into the {\bf{thylakoid space.}} As protons flow back through the {\bf{stalked particle}}, {\bf{ADP}} is {\bf{phosphorylated}}; {\bf{2 ATP}} are made in total.} \tn % Row Count 15 (+ 6) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{5. Electrons enter {\bf{photosystem 1}} where{\bf{ light excites them}}, boosting them to an even {\bf{higher energy level.}}} \tn % Row Count 18 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{6. {\bf{Electrons}} enter a {\bf{final electron carrier.}}} \tn % Row Count 20 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{7. {\bf{Electrons}} and {\bf{protons reduce NADP}} to {\bf{reduced NADP}} which pass to the {\bf{Calvin Cycle}} with the {\bf{2 ATP made.}}} \tn % Row Count 23 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{ATP production in the chloroplast}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1731521972_ATP production in the chloroplast.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cyclic Phosphorylation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Involves only {\bf{photosystem 1}}, producing {\bf{1 ATP}} molecule only.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{As {\bf{photolysis}} does not occur, {\bf{no oxygen}} is {\bf{released.}}} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Electrons}} take a {\bf{cyclical pathway.}}} \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{If there is {\bf{no NADP}} available, then {\bf{electrons}} fall back into the {\bf{electron transport chain}} (at an intermediate energy level) and {\bf{generate 1 ATP.}}} \tn % Row Count 9 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{This {\bf{cycle continues}} until {\bf{NADP}} is {\bf{available.}}} \tn % Row Count 11 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The {\bf{ATP produced}} can be used in the {\bf{Calvin Cycle}}, in the {\bf{stomatal opening mechanism}}, or for {\bf{other cellular processes.}}} \tn % Row Count 14 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{ATP}} is produced in the {\bf{chloroplast}} when {\bf{protons}} are {\bf{pumped}} across the {\bf{thylakoid membrane}} using {\bf{energy}} from the {\bf{electrons}} and {\bf{accumulate}} with {\bf{protons}} generated from {\bf{photolysis of water}} in the {\bf{thylakoid space}} generating an {\bf{electrochemical}} (proton) {\bf{gradient.}}} \tn % Row Count 21 (+ 7) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The {\bf{H+ ions}} diffuse back into the {\bf{stroma}} through {\bf{stalked particles}} generating {\bf{ATP.}}} \tn % Row Count 23 (+ 2) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The protons and electrons {\bf{reduce NADP}}, which {\bf{removes H+ ions}} from the {\bf{stroma}}, further contributing to the {\bf{H+ gradient.}}} \tn % Row Count 26 (+ 3) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The {\bf{movement of protons}} is referred to as {\bf{chemiosmosis.}}} \tn % Row Count 28 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Cyclic Phosphorylation}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1731523876_cyclic phosphorylation.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Calvin Cycle - light indep stage of photosynthesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{This stage occurs in the {\bf{stroma.}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{ATP}} and {\bf{reduced NADP}} from the {\bf{light-dependent reaction}} are used to {\bf{fix carbon}} from carbon dioxide with the help of the enzyme {\bf{RuBisCO.}}} \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The sequence was first worked out by {\bf{Calvin}} and his team using a {\bf{radioactive isotope}} of {\bf{carbon}} (14C) present in {\bf{hydrogen carbonate.}}} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{At {\bf{regular intervals}}, Calvin {\bf{removed samples}} into {\bf{hot methanol}} to {\bf{kill}} the {\bf{chlorella algae}} used and to {\bf{stop all enzyme reactions.}}} \tn % Row Count 12 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{He then performed {\bf{chromatography}} to {\bf{identify}} the {\bf{products.}}} \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{He exposed his {\bf{chromatogram}} to piece of {\bf{x-ray film}} which would {\bf{detect radiation}} emitted from {\bf{14C}} used.} \tn % Row Count 17 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{This {\bf{identified}} products containing {\bf{14C}} in the {\bf{order}} they were {\bf{produced}}: first was {\bf{hydrogen carbonate}} ions, then {\bf{glycerate 3-phosphate}} (GP), {\bf{triose phosphate}} (TP), {\bf{ribulose bisphosphate}} (RuBP) and finally {\bf{glucose.}}} \tn % Row Count 22 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Calvin's lollipop apparatus}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1731524114_calvins lollipop apparatus.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Calvin Cycle}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1731524265_calvin cycle.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Stages in the Calvin Cycle}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. {\bf{CO2}} diffuses into leaf via {\bf{stomata}}, dissolving in the {\bf{water}} surrounding {\bf{palisade mesophyll}} cells before {\bf{diffusing into}} the {\bf{cells.}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2. {\bf{CO2}} combines with the {\bf{5 carbon}} compound {\bf{ribulose bisphosphate}} (RuBP) using the enzyme {\bf{RuBisCO}} to form an {\bf{unstable 6C}} compound.} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. {\bf{Unstable 6C}} compound immediately {\bf{breaks down}} into {\bf{2 molecules}} of {\bf{glycerate 3-phosphate}} (GP).} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{4. Using {\bf{one ATP molecule}} from the {\bf{light reaction}}, GP is {\bf{reduced}} to {\bf{triose phosphate}} (TP) using {\bf{hydrogen atoms}} from {\bf{reduced HADP.}}} \tn % Row Count 14 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{5. {\bf{Triose phosphate}} molecules {\bf{combine}} in {\bf{pairs}} to form {\bf{hexose sugars.}}} \tn % Row Count 16 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{6. {\bf{5}} out of {\bf{every 6 triose phosphate}} molecules {\bf{produced}} are used to {\bf{regenerate RuBP}} (via the intermediate ribulose phosphate) using {\bf{ATP}} from the {\bf{light-dependent reaction}} to supply {\bf{energy and phosphate.}} This allows the {\bf{cycle}} to {\bf{continue.}}} \tn % Row Count 22 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Stages in the Calvin Cycle}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{1. {\bf{CO2}} diffuses into leaf via {\bf{stomata}}, dissolving in the {\bf{water}} surrounding {\bf{palisade mesophyll}} cells before {\bf{diffusing into}} the {\bf{cells.}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{2. {\bf{CO2}} combines with the {\bf{5 carbon}} compound {\bf{ribulose bisphosphate}} (RuBP) using the enzyme {\bf{RuBisCO}} to form an {\bf{unstable 6C}} compound.} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{3. {\bf{Unstable 6C}} compound immediately {\bf{breaks down}} into {\bf{2 molecules}} of {\bf{glycerate 3-phosphate}} (GP).} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{4. Using {\bf{one ATP molecule}} from the {\bf{light reaction}}, GP is {\bf{reduced}} to {\bf{triose phosphate}} (TP) using {\bf{hydrogen atoms}} from {\bf{reduced HADP.}}} \tn % Row Count 14 (+ 4) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{5. {\bf{Triose phosphate}} molecules {\bf{combine}} in {\bf{pairs}} to form {\bf{hexose sugars.}}} \tn % Row Count 16 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{6. {\bf{5}} out of {\bf{every 6 triose phosphate}} molecules {\bf{produced}} are used to {\bf{regenerate RuBP}} (via the intermediate ribulose phosphate) using {\bf{ATP}} from the {\bf{light-dependent reaction}} to supply {\bf{energy and phosphate.}} This allows the {\bf{cycle}} to {\bf{continue.}}} \tn % Row Count 22 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Product Synthesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Plants must {\bf{produce}} all the {\bf{carbohydrates, fats and proteins}} they need from the {\bf{products}} of the {\bf{Calvin Cycle.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Fructose phosphate}} formed from the {\bf{2 molecules}} of {\bf{triose phosphate}} can be converted to {\bf{glucose}}, or {\bf{combined}} with {\bf{glucose}} to produce {\bf{sucrose.}}} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Sucrose}} is then {\bf{translocated}} in the {\bf{phloem}} to the {\bf{growing regions}} of the plant.} \tn % Row Count 9 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Some a {\bf{glucose}} is {\bf{stored as starch}}, {\bf{B glucose}} forms {\bf{cellulose}} in {\bf{cell walls.}}} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Fatty acids}} can be {\bf{formed}} from {\bf{glycerate 3-phosphate}}, and {\bf{glycerol}} from {\bf{triose phosphate}}, the building blocks of {\bf{triglycerides.}}} \tn % Row Count 15 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Proteins}} can be {\bf{formed}} from {\bf{glycerate 3-phosphate}}, but the {\bf{amino group}} requires {\bf{nitrogen}} from {\bf{nitrate ions.}}} \tn % Row Count 18 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{Other compounds, e.g. {\bf{chlorophyll}}, require additional ions e.g. {\bf{Mg2+}}, and the {\bf{middle lamella}} of {\bf{cell walls}} needs {\bf{Ca2+.}}} \tn % Row Count 21 (+ 3) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{A {\bf{lack of nitrogen}} results in {\bf{stunted growth}} in plants, as plants {\bf{cannot synthesise proteins}} due to {\bf{lack of nitrogen}}, whereas a {\bf{lack of magnesium}} causes {\bf{chlorosis}}, the {\bf{yellowing}} of the leaves, as {\bf{chlorophyll}} cannot be {\bf{synthesised.}}} \tn % Row Count 27 (+ 6) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{This can be shown {\bf{experimentally}} by placing {\bf{plants in soils}} with {\bf{different nutrient}} contents and {\bf{observing growth.}}} \tn % Row Count 30 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Limiting factors in photosynthesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{The {\bf{rate of photosynthesis}} is {\bf{controlled}} by a {\bf{number of factors}} including the {\bf{concentration of CO2}}, {\bf{light intensity}}, and {\bf{temperature.}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The {\bf{limiting factor}} is the one which is in {\bf{shortest supply}} which {\bf{controls}} the {\bf{rate-limiting step}}, and therefore an {\bf{increase}} in it {\bf{increases}} the {\bf{rate of photosynthesis.}}} \tn % Row Count 8 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{x{1.34379 cm} x{3.63321 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{5.377cm}}{\bf\textcolor{white}{Limiting Factors Table}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Factor}} & {\bf{Explanation}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} Carbon Dioxide & At {\bf{low concentrations}}, {\bf{CO2 concentration}} is limiting, but {\bf{above 0.5\%}}, the {\bf{rate plateaus}}, showing that something else must be limiting. {\bf{Above 1\%}} the {\bf{stomata close}}, preventing the {\bf{uptake}} of {\bf{carbon dioxide.}} \tn % Row Count 10 (+ 9) % Row 2 \SetRowColor{LightBackground} Light intensity & As {\bf{light intensity increases}} the {\bf{rate of photosynthesis increases}} up to about 10,000 lux (SI unit if illuminance) when sone other factor becomes limiting. At {\bf{very high light intensities}} the rate {\bf{decreases}} as chloroplast pigments become {\bf{bleached.}} Different plants have evolved to be {\bf{most efficient}} at {\bf{light intensities}} found in their {\bf{environment}}, e.g. {\bf{sun and shade plants.}} \tn % Row Count 25 (+ 15) % Row 3 \SetRowColor{white} \seqsplit{Temperature} & {\bf{Temperature increases}} the {\bf{kinetic energy}} of the {\bf{reactants}} and {\bf{enzymes}} involved in {\bf{photosynthesis.}} Unlike other factors, a {\bf{plateau}} is not reached as enzymes, e.g. {\bf{RuBisCO}}, begin to {\bf{denature}} so the {\bf{rate of photosynthesis decreases}} above the {\bf{optimum temperature.}} This will be {\bf{higher}} in species {\bf{adapted to hot}}, {\bf{dry}} environments. \tn % Row Count 38 (+ 13) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Limiting Factor Graphs}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{5.377cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1731619001_limiting factors.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{5.377cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{5.377cm}}{\bf\textcolor{white}{Measuring the rate of photosynthesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Aquatic plants}} are a good subject to use when {\bf{investigating}} how {\bf{different}} factors affect {\bf{photosynthesis.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{{\bf{Temperature}} and {\bf{CO2}} concentration are {\bf{more easily}} controlled than with {\bf{terrestrial plants}}, by using a {\bf{water bath}} and {\bf{controlling hydrogen carbonate}} concentration.} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{It is also {\bf{easy to collect}} and {\bf{accurately measure}} the {\bf{oxygen}} produced in a {\bf{capillary tube.}}} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{The {\bf{volume}} of the {\bf{bubble}} collected is {\bf{calculated}} by the formula:} \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{5.377cm}}{{\bf{Volume = pi r2 x length of bubble}}} \tn % Row Count 13 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{5.377cm}}{Where pi = 3.14 and r = radius or diameter/2} \tn % Row Count 14 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}