\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{lonnieRCH} \pdfinfo{ /Title (nucleic-acids-and-their-functions.pdf) /Creator (Cheatography) /Author (lonnieRCH) /Subject (Nucleic acids and their functions Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Nucleic acids and their functions Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{lonnieRCH} via \textcolor{DarkBackground}{\uline{cheatography.com/208046/cs/44690/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}lonnieRCH \\ \uline{cheatography.com/lonnierch} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 26th October, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Nucleotides}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Both {\bf{DNA}} and {\bf{RNA}} are made up of {\bf{monomers}} called {\bf{nucleotides}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Each nucleotide contains a {\bf{phosphate group}}, a {\bf{nitrogen-containing}} organic base, and a {\bf{pentose}} (5-carbon) sugar: either {\bf{ribose}} (RNA) of {\bf{deoxyribose}} (DNA)} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{There are 2 groups of organic bases: {\bf{Pyrimidines}} (single ring) and {\bf{purines}} (double ring)} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{For {\bf{nitrogenous bases}} found in DNA:} \tn % Row Count 9 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- Guanine (Purine)} \tn % Row Count 10 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- Cytosine (pyrimidine)} \tn % Row Count 11 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- Adenine (purine)} \tn % Row Count 12 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- Thymine (pyrimidine)} \tn % Row Count 13 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{In {\bf{RNA}} the pyrimidine {\bf{uracil}} replaces {\bf{thymine}}} \tn % Row Count 15 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Nucleotide diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729073609_nucleotides.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{ATP}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Adenine triphosphate is also a nucleotide: it has a ribose sugar joined to the adenine base, with three phosphate groups attached.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{When the high-energy bond between the second and third phosphate group is broken via hydrolysis by the enzyme ATPase, 30.6Kg of energy is released for use in the cell, and adenine diphosphate is formed.} \tn % Row Count 8 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This reaction is reversible, requiring energy from respiration of glucose to reform the bond} \tn % Row Count 10 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{ATP Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729074400_ATP.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Structure of DNA}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{DNA consists of {\bf{2 polynucleotide}} strands that are {\bf{arranged}} into a {\bf{double helix.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{First a {\bf{dinucleotide}} is formed when a {\bf{condensation reaction}} occurs between {\bf{2 nucleotides:}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{5th carbon}} atom of a {\bf{deoxyribose sugar}} is joined to the {\bf{3rd carbon atom}} of the {\bf{deoxyribose}} sugar of the nucleotide above it, via the {\bf{phosphate molecule.}}} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This continues, building a {\bf{single strand}} of DNA in the {\bf{5'-3' direction.}}} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{DNA}} then forms a {\bf{double-stranded}} molecule from {\bf{two strands:}} one strand runs in the {\bf{opposite direction}} to the other {\bf{(anti-parallel).}}} \tn % Row Count 15 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Both strands}} are held {\bf{together}} by {\bf{hydrogen bonds}} that form between {\bf{complimentary nitrogenous bases.}}} \tn % Row Count 18 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{double strand}} then {\bf{twists}} to form a {\bf{double helix.}}} \tn % Row Count 20 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Bases}} between {\bf{both stands}} pair up in a certain way which is called the {\bf{complementary base pairing rule:}}} \tn % Row Count 23 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Guanine}} forms {\bf{hydrogen bonds}} with an {\bf{adjacent cytosine}} molecule and {\bf{adenine}}forms {\bf{hydrogen bonds}} with an {\bf{adjacent thymine}} molecule.} \tn % Row Count 27 (+ 4) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Hydrogen bonds}} are {\bf{weak}}, but the sheer number of them present in a {\bf{molecule of DNA}} over a million {\bf{nucleotides}} long, means that collectively they are {\bf{very strong.}}} \tn % Row Count 31 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Structure of DNA (cont)}} \tn % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{In fact you would need to {\bf{heat DNA}} to {\bf{over 95 degrees C}} to {\bf{break}} them all.} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{ADP Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729074426_ADP.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Advantages and roles of ATP}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Advantages of ATP:} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Energy is {\bf{released quickly}} from a {\bf{one-step reaction}} involving just {\bf{one enzyme}} (hydrolysis of glucose takes many steps)} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Energy}} is released in {\bf{small amounts}}, {\bf{30.6KJ}} where it is needed. By contrast just {\bf{one}} molecule of {\bf{glucose}} contains {\bf{1880KJ}} which {\bf{couldn't safely}} be released all at once.} \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{It is the {\bf{'universal energy currency'}}, i.e. it's a common source of {\bf{energy}} for all reactions in {\bf{all living things.}}} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Roles of ATP in cells:} \tn % Row Count 12 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Used in many {\bf{anabolic reactions}}, e.g. {\bf{DNA}} and {\bf{protein synthesis}}} \tn % Row Count 14 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Active transport}}} \tn % Row Count 15 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Muscle contraction}}} \tn % Row Count 16 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Nerve impulse transmission}}} \tn % Row Count 17 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{p{0.51495 cm} x{2.91805 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Key Term}} \tn % Row 0 \SetRowColor{LightBackground} Codon & The {\bf{triplet of bases}} in {\bf{mRNA}} that codes for a {\bf{particular amino acid}}, or a {\bf{punctuation signal.}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \seqsplit{Introns} & {\bf{Non-coding}} nucleotide sequence in {\bf{DNA}} and {\bf{pre-mRNA}}, that is {\bf{removed}} from {\bf{pre-mRNA}}, to produce {\bf{mature mRNA.}} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} Exons & {\bf{Nucleotide}} sequence on {\bf{one strand}} of the {\bf{DNA molecule}} and the {\bf{corresponding mRNA}} that codes for the {\bf{production}} of a {\bf{specific polypeptide.}} \tn % Row Count 13 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Structure of DNA diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729078947_structure of DNA.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Extracting DNA}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{DNA can be {\bf{easily extracted}} from cells by {\bf{grinding}} up a sample in a solution of ice cold {\bf{salt and washing up liquid.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{detergent dissolves}} the {\bf{lipids}} in the {\bf{phospholipid membranes}}, allowing {\bf{DNA}} to be {\bf{released}}, and the {\bf{cold temperature protects}} the DNA from {\bf{cellular DNAases.}}} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Addition}} of {\bf{protease}} will {\bf{digest}} any remaining {\bf{cellular enzymes}} and the {\bf{histones}} that the DNA is wound around.} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Finally, {\bf{adding ethanol}} to the salt already present, will cause the DNA to {\bf{precipitate}} out from the {\bf{solution.}}} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Structure of RNA}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{RNA}} is usually {\bf{shorter}} than {\bf{DNA}} and {\bf{single-stranded.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Nucleotides}} also differ in that the {\bf{sugar}} is {\bf{ribose}}, the one base {\bf{thymine}} replaced with {\bf{uracil.}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Three}} different types of RNA are involved in {\bf{protein synthesis.}}} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Structure of tRNA}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729094798_structure of tRNA.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{p{0.3433 cm} x{3.0897 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Types of RNA}} \tn % Row 0 \SetRowColor{LightBackground} mRNA & {\bf{Messenger RNA}} is a {\bf{single-stranded}} molecule typically {\bf{300-2000}} nucleotides long. It is {\bf{produced}} in the {\bf{nucleus}} using one of the {\bf{DNA strands}} as a {\bf{template}} during {\bf{transcription.}} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} rRNA & {\bf{Ribosomal RNA}} forms {\bf{ribosomes}} with the {\bf{addition}} of {\bf{protein.}} \tn % Row Count 9 (+ 3) % Row 2 \SetRowColor{LightBackground} tRNA & {\bf{Transfer RNA}} is a {\bf{small molecule}} that winds itself into a {\bf{cloverleaf}} shape. It has an {\bf{anticodon}} at one end, and an {\bf{amino acid}} at the other. As the name suggests, it {\bf{'transfers'}} the correct amino acid to the {\bf{growing polypeptide}} during {\bf{translation.}} \tn % Row Count 17 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Process of semi-conservative DNA replication}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The process {\bf{requires ATP}}, {\bf{free nucleotides}} and {\bf{enzymes.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- {\bf{DNA helicase}} breaks the {\bf{hydrogen bonds}} between the bases causing the {\bf{double helix}} to {\bf{unwind}} and separate into {\bf{two strands.}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- The {\bf{exposed bases}} bind to {\bf{free floating nucleotides}} in the {\bf{nucleoplasm.}}} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- {\bf{DNA polymerase}} binds the {\bf{complimentary nucleotides}} (forming the {\bf{phosphodiester bond).}}} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- {\bf{One strand}} acts as the {\bf{template}} for the {\bf{new molecule}}, so newly synthesised DNA contains {\bf{one parent strand}} and a {\bf{complimentary}} newly synthesised {\bf{strand.}}} \tn % Row Count 13 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Functions of DNA}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{DNA has 2 main functions in organisms} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{1. {\bf{Protein synthesis}} - the {\bf{sequence of bases}} in one strand, called the {\bf{template strand}}, determines the {\bf{order}} of {\bf{amino acids}} in the {\bf{polypeptide}} (primary structure).} \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{2. {\bf{Replication}} - when {\bf{cells divide}}, a complete {\bf{copy of the DNA}} in the cell needs to be made. Both DNA strands {\bf{separate}} and each strand acts as a {\bf{template}} to {\bf{synthesise}} a {\bf{complimentary strand.}}} \tn % Row Count 10 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Three theories for how DNA replicates have been proposed:} \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{1. {\bf{Conservative replication}}: {\bf{original parent}} stranded molecule is {\bf{conserved}}, and a {\bf{new double-stranded DNA }}molecule {\bf{synthesised}} from it.} \tn % Row Count 16 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{2. {\bf{Semi-conservative}} replication: {\bf{parental strands separate}}, and each strands acts as a {\bf{template}} to {\bf{synthesise}} a new strand. The new molecule consists of one original parent strand and one newly synthesised strand.} \tn % Row Count 21 (+ 5) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{3. {\bf{Dispersive:}} the {\bf{newly synthesised}} molecules contain {\bf{fragments}} from the {\bf{original parent strand}} and {\bf{newly}} synthesised DNA.} \tn % Row Count 24 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{0.92691 cm} x{2.50609 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Key Term}} \tn % Row 0 \SetRowColor{LightBackground} Silent Mutation & A {\bf{change}} in the {\bf{sequence}} of nucleotide {\bf{bases}} without a {\bf{subsequent change}} in the {\bf{amino acid.}} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Meselson-stahl experiment}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{1. Grow {\bf{bacteria}} on a {\bf{15N}} is a {\bf{heavy isotope}} of nitrogen so all DNA produced would be a {\bf{heavier weight}} than normal. When DNA was {\bf{extracted}} by {\bf{centrifuging}} in {\bf{caesium chloride}}, the DNA band appeared {\bf{low down}} in the tube.} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{2. {\bf{Bacteria}} were then grown on a {\bf{14N medium}} (normal weight nitrogen), and after {\bf{one generation}} the DNA {\bf{extracted}} formed an {\bf{intermediate band}} half way up the tube. This is because the DNA molecule contained {\bf{one strand}} from the {\bf{heavy}} parent and {\bf{one newly synthesised}} {\bf{light}} DNA strand. (Because one band was produced this {\bf{rules out conservative replication).}}} \tn % Row Count 14 (+ 8) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{3. The {\bf{bacteria}} were grown for a {\bf{further generation}} using {\bf{14N medium}}. The DNA {\bf{extracted}} formed an {\bf{intermediate band}} half way up the tube, and a {\bf{lighter band}} towards the top of the tube. Because {\bf{half}} of the DNA was {\bf{intermediate weight}} and {\bf{half light}}, this rules out {\bf{dispersive replication.}}} \tn % Row Count 21 (+ 7) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{4. {\bf{DNA}} therefore {\bf{replicates semi-conservatively.}}} \tn % Row Count 23 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{5. If grown for {\bf{further generations}} using {\bf{14N medium}}, whilst {\bf{intermediate weight}} DNA would remain, the {\bf{proportion}} of {\bf{light DNA}} produced would {\bf{increase.}}} \tn % Row Count 27 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Meselson-stahl experiment diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729102337_meselson and stahl experiment.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{DNA replication theories}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729103346_Replication theories.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{The Genetic code}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{sequence of nucleotide bases}} forms a {\bf{code}}.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Each {\bf{'code word'}} has 3 letters called a {\bf{triplet code}} or {\bf{codon}}, which codes for a {\bf{specific amino acid.}}} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{p{0.39495 cm} p{0.42128 cm} x{1.00054 cm} x{0.81623 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{3.833cm}}{\bf\textcolor{white}{Genetic code examples:}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{DNA codon}} & {\bf{mRNA codon}} & {\bf{Amino acid that is coded for}} & {\bf{Amino acid abbreviation}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} GGG & CCC & Proline & Pro \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} CGG & GCC & Glycine & Gly \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} ATG & UAC & Tyrosine & Tyr \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} TAC & AUG & Methionine & Met \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} ACT & UGA & Stop & \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{The Genetic code part 2}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{There are {\bf{20 amino acids}} that are coded by {\bf{4power3 bases,}} i.e. {\bf{64 different combinations}} of {\bf{A, G, C, T(U).}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Therefore, there are {\bf{'spare' base codes.}}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This is referred to as {\bf{degeneracy}} or the {\bf{'degenerate code'.}}} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This code is {\bf{universal}}, i.e. it is the {\bf{same}} in {\bf{all living things.}}} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{One {\bf{codon}} acts as a {\bf{START}} codon, marking the point on the {\bf{DNA}} where {\bf{transcription}} begins - this is {\bf{AUG}} on the {\bf{mRNA}} and codes for {\bf{methionine.}}} \tn % Row Count 12 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Each gene}} found on the DNA will code for a {\bf{different polypeptide:}} this is called the {\bf{one gene}}, one {\bf{polypeptide hypothesis.}}} \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Post-translational modification}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Translation}} produces a {\bf{polypeptide}}, but {\bf{further modification}} is needed in order to {\bf{produce}} a {\bf{protein}} with a {\bf{secondary, tertiary or quaternary}} structure.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This {\bf{modification}} occurs within the {\bf{Golgi body.}}} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Modification}} also occurs to {\bf{produce molecules}} such as {\bf{glycoproteins, lipoproteins, and complex quaternary structures}} such as {\bf{haemoglobin.}}} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{To form {\bf{haemoglobin}}, {\bf{2 alpha chains}} and {\bf{2 beta chains}} (coded by 2 different genes) need to be assembled together with {\bf{iron}} as a {\bf{prosthetic group.}}} \tn % Row Count 14 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Protein Synthesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Transcription}} occurs in the {\bf{nucleus.}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Translation}} occurs at the {\bf{ribosomes.}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Post-translational}} modification occurs in the {\bf{Golgi apparatus}} prior to {\bf{packaging}} of the {\bf{protein}} into {\bf{vesicles.}}} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Transcription}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{DNA}} acts as a {\bf{template}} for the {\bf{production}} of {\bf{mRNA.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{DNA helicase}} acts on a {\bf{specific region}} of the DNA molecule called the {\bf{cistron}}, {\bf{breaking}} the {\bf{hydrogen bonds}} between both {\bf{DNA strands}}, causing the strands to {\bf{separate}} and {\bf{unwind}}, exposing {\bf{nucleotide bases.}}} \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Free RNA nucleotide}} pair to {\bf{exposed bases}} on the {\bf{DNA template strand}} and {\bf{RNA polymerase}} joins them by {\bf{forming}} the {\bf{phosphodiester bonds}} between the {\bf{phosphate group}} on one nucleotide and the {\bf{ribose sugar}} on the next.} \tn % Row Count 12 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This continues until the {\bf{RNA polymerase}} reaches a {\bf{STOP codon}}, when the {\bf{RNA polymerase}} detaches and {\bf{production}} of {\bf{mRNA}} is complete.} \tn % Row Count 15 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{mRNA strand}} leaves the {\bf{nucleus}} via the {\bf{nuclear pores}} and moves to the {\bf{ribosomes.}}} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Transcription diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729162224_transcription.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Introns and Exons}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{In {\bf{eukaryotes}}, {\bf{introns}} are present within {\bf{many genes}} so are also {\bf{transcribed}} producing {\bf{pre-mRNA.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{coding regions}} are referred to as {\bf{exons.}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{pre-mRNA}} is {\bf{spliced}} to remove the {\bf{non-coding regions}} before passing to the {\bf{ribosomes.}} In {\bf{prokaryotes}}, the DNA does not contain {\bf{introns}}, and so the {\bf{mRNA}} is {\bf{produced}} directly from the {\bf{DNA template.}}} \tn % Row Count 10 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Splicing of pre-mRNA}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729162987_splicing of pre-mRNA.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Translation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Involves another {\bf{specific RNA}} molecule called {\bf{transfer RNA}} (tRNA).} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{At one end of the {\bf{tRNA}} molecule there are {\bf{3 exposed bases}} called the {\bf{anticodon}}, these are {\bf{complimentary}} to the {\bf{mRNA codon.}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{At the opposite end of the {\bf{tRNA}} molecule is an {\bf{amino acid}} attachment site where the {\bf{relevant amino acid}} is found.} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The attachment of the {\bf{relevant amino acid}} to the {\bf{attachment site}} is called {\bf{amino acid aviation}} and {\bf{requires ATP.}}} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Translation}} involves {\bf{converting}} the {\bf{codons}} on the {\bf{mRNA}} into a {\bf{sequence}} of {\bf{amino acids}} known as a {\bf{polypeptide.}}} \tn % Row Count 14 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Each {\bf{ribosome}} (found {\bf{free}} in the {\bf{cytoplasm}}, or attached to the {\bf{rough endoplasmic reticulum}}) is made up of {\bf{2 subunits}} made from {\bf{ribosomal RNA}} and {\bf{protein.}}} \tn % Row Count 18 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{mRNA binds}} to the {\bf{smaller subunit}}, whilst {\bf{tRNA}} to one of {\bf{2 attachment sites}} on the {\bf{larger subunit.}}} \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{The process of translation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Initiation}}: {\bf{ribosome}} attaches to the {\bf{START codon.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{tRNA}} molecule with a {\bf{complimentary anticodon}} to the {\bf{first codon}} to the {\bf{first codon}}, binds to the {\bf{first attachment site}} on the {\bf{ribosome.}}} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{A {\bf{second tRNA}} molecule joins to the {\bf{second attachment site}}, and a {\bf{ribosomal enzyme catalyses}} the {\bf{formation}} of a {\bf{peptide bond}} between the {\bf{2 amino acids.}} This is known as {\bf{elongation.}}} \tn % Row Count 11 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{first tRNA}} molecule is released and the {\bf{ribosome}} now moves {\bf{one codon}} along the {\bf{mRNA}}, which exposes a {\bf{free attachment site}} and another {\bf{tRNA molecule}} joins and the {\bf{process}} is {\bf{repeated.}}} \tn % Row Count 16 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This {\bf{repeats}} until a {\bf{STOP codon}} is reached, when the {\bf{polypeptide}} is {\bf{released.}} This is called {\bf{termination.}}} \tn % Row Count 19 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Usually {\bf{several ribosomes}} bind to a {\bf{single mRNA}} strand at the {\bf{same time.}} This is called a {\bf{polysome.}}} \tn % Row Count 22 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Translation Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729167667_translation.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}