\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{lonnieRCH} \pdfinfo{ /Title (nucleic-acids-and-their-functions.pdf) /Creator (Cheatography) /Author (lonnieRCH) /Subject (Nucleic acids and their functions Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Nucleic acids and their functions Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{lonnieRCH} via \textcolor{DarkBackground}{\uline{cheatography.com/208046/cs/44690/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}lonnieRCH \\ \uline{cheatography.com/lonnierch} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 18th March, 2025.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Nucleotides}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Both {\bf{DNA}} and {\bf{RNA}} are made up of {\bf{monomers}} called {\bf{nucleotides}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Each nucleotide contains a {\bf{phosphate group}}, a {\bf{nitrogen-containing}} organic base, and a {\bf{pentose}} (5-carbon) sugar: either {\bf{ribose}} (RNA) of {\bf{deoxyribose}} (DNA)} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{There are 2 groups of organic bases: {\bf{Pyrimidines}} (single ring) and {\bf{purines}} (double ring)} \tn % Row Count 8 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{For {\bf{nitrogenous bases}} found in DNA:} \tn % Row Count 9 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- Guanine (Purine)} \tn % Row Count 10 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- Cytosine (pyrimidine)} \tn % Row Count 11 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- Adenine (purine)} \tn % Row Count 12 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- Thymine (pyrimidine)} \tn % Row Count 13 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{In {\bf{RNA}} the pyrimidine {\bf{uracil}} replaces {\bf{thymine}}} \tn % Row Count 15 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Nucleotide diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729073609_nucleotides.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{ATP}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Adenine triphosphate}} is also a {\bf{nucleotide}}: it has a {\bf{ribose sugar}} joined to the {\bf{adenine base}}, with {\bf{three phosphate}} groups attached.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{When the {\bf{high-energy bond}} between the {\bf{second}} and {\bf{third phosphate}} group is {\bf{broken}} via {\bf{hydrolysis}} by the enzyme {\bf{ATPase}}, {\bf{30.6Kg}} of energy is {\bf{released}} for use in the cell, and {\bf{adenine diphosphate}} is formed.} \tn % Row Count 8 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This reaction is {\bf{reversible}}, requiring {\bf{energy}} from {\bf{respiration}} of {\bf{glucose}} to {\bf{reform}} the bond} \tn % Row Count 11 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{ATP Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729074400_ATP.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Structure of DNA}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{DNA consists of {\bf{2 polynucleotide}} strands that are {\bf{arranged}} into a {\bf{double helix.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{First a {\bf{dinucleotide}} is formed when a {\bf{condensation reaction}} occurs between {\bf{2 nucleotides:}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{5th carbon}} atom of a {\bf{deoxyribose sugar}} is joined to the {\bf{3rd carbon atom}} of the {\bf{deoxyribose}} sugar of the nucleotide above it, via the {\bf{phosphate molecule.}}} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This continues, building a {\bf{single strand}} of DNA in the {\bf{5'-3' direction.}}} \tn % Row Count 11 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{DNA}} then forms a {\bf{double-stranded}} molecule from {\bf{two strands:}} one strand runs in the {\bf{opposite direction}} to the other {\bf{(anti-parallel).}}} \tn % Row Count 15 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Both strands}} are held {\bf{together}} by {\bf{hydrogen bonds}} that form between {\bf{complimentary nitrogenous bases.}}} \tn % Row Count 18 (+ 3) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{double strand}} then {\bf{twists}} to form a {\bf{double helix.}}} \tn % Row Count 20 (+ 2) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Bases}} between {\bf{both stands}} pair up in a certain way which is called the {\bf{complementary base pairing rule:}}} \tn % Row Count 23 (+ 3) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Guanine}} forms {\bf{hydrogen bonds}} with an {\bf{adjacent cytosine}} molecule and {\bf{adenine}}forms {\bf{hydrogen bonds}} with an {\bf{adjacent thymine}} molecule.} \tn % Row Count 27 (+ 4) % Row 9 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Hydrogen bonds}} are {\bf{weak}}, but the sheer number of them present in a {\bf{molecule of DNA}} over a million {\bf{nucleotides}} long, means that collectively they are {\bf{very strong.}}} \tn % Row Count 31 (+ 4) \end{tabularx} \par\addvspace{1.3em} \vfill \columnbreak \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Structure of DNA (cont)}} \tn % Row 10 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{In fact you would need to {\bf{heat DNA}} to {\bf{over 95 degrees C}} to {\bf{break}} them all.} \tn % Row Count 2 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{ADP Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729074426_ADP.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Advantages and roles of ATP}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Advantages of ATP:} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Energy is {\bf{released quickly}} from a {\bf{one-step reaction}} involving just {\bf{one enzyme}} (hydrolysis of glucose takes many steps)} \tn % Row Count 4 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Energy}} is released in {\bf{small amounts}}, {\bf{30.6KJ}} where it is needed. By contrast just {\bf{one}} molecule of {\bf{glucose}} contains {\bf{1880KJ}} which {\bf{couldn't safely}} be released all at once.} \tn % Row Count 8 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{It is the {\bf{'universal energy currency'}}, i.e. it's a common source of {\bf{energy}} for all reactions in {\bf{all living things.}}} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Roles of ATP in cells:} \tn % Row Count 12 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Used in many {\bf{anabolic reactions}}, e.g. {\bf{DNA}} and {\bf{protein synthesis}}} \tn % Row Count 14 (+ 2) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Active transport}}} \tn % Row Count 15 (+ 1) % Row 7 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Muscle contraction}}} \tn % Row Count 16 (+ 1) % Row 8 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Nerve impulse transmission}}} \tn % Row Count 17 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{p{0.51495 cm} x{2.91805 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Key Term}} \tn % Row 0 \SetRowColor{LightBackground} Codon & The {\bf{triplet of bases}} in {\bf{mRNA}} that codes for a {\bf{particular amino acid}}, or a {\bf{punctuation signal.}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \seqsplit{Introns} & {\bf{Non-coding}} nucleotide sequence in {\bf{DNA}} and {\bf{pre-mRNA}}, that is {\bf{removed}} from {\bf{pre-mRNA}}, to produce {\bf{mature mRNA.}} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} Exons & {\bf{Nucleotide}} sequence on {\bf{one strand}} of the {\bf{DNA molecule}} and the {\bf{corresponding mRNA}} that codes for the {\bf{production}} of a {\bf{specific polypeptide.}} \tn % Row Count 13 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Structure of DNA diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729078947_structure of DNA.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Extracting DNA}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{DNA can be {\bf{easily extracted}} from cells by {\bf{grinding}} up a sample in a solution of ice cold {\bf{salt and washing up liquid.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{detergent dissolves}} the {\bf{lipids}} in the {\bf{phospholipid membranes}}, allowing {\bf{DNA}} to be {\bf{released}}, and the {\bf{cold temperature protects}} the DNA from {\bf{cellular DNAases.}}} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Addition}} of {\bf{protease}} will {\bf{digest}} any remaining {\bf{cellular enzymes}} and the {\bf{histones}} that the DNA is wound around.} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Finally, {\bf{adding ethanol}} to the salt already present, will cause the DNA to {\bf{precipitate}} out from the {\bf{solution.}}} \tn % Row Count 13 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Structure of RNA}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{RNA}} is usually {\bf{shorter}} than {\bf{DNA}} and {\bf{single-stranded.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Nucleotides}} also differ in that the {\bf{sugar}} is {\bf{ribose}}, the one base {\bf{thymine}} replaced with {\bf{uracil.}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Three}} different types of RNA are involved in {\bf{protein synthesis.}}} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Structure of tRNA}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729094798_structure of tRNA.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{p{0.3433 cm} x{3.0897 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Types of RNA}} \tn % Row 0 \SetRowColor{LightBackground} mRNA & {\bf{Messenger RNA}} is a {\bf{single-stranded}} molecule typically {\bf{300-2000}} nucleotides long. It is {\bf{produced}} in the {\bf{nucleus}} using one of the {\bf{DNA strands}} as a {\bf{template}} during {\bf{transcription.}} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} rRNA & {\bf{Ribosomal RNA}} forms {\bf{ribosomes}} with the {\bf{addition}} of {\bf{protein.}} \tn % Row Count 9 (+ 3) % Row 2 \SetRowColor{LightBackground} tRNA & {\bf{Transfer RNA}} is a {\bf{small molecule}} that winds itself into a {\bf{cloverleaf}} shape. It has an {\bf{anticodon}} at one end, and an {\bf{amino acid}} at the other. As the name suggests, it {\bf{'transfers'}} the correct amino acid to the {\bf{growing polypeptide}} during {\bf{translation.}} \tn % Row Count 17 (+ 8) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Process of semi-conservative DNA replication}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The process {\bf{requires ATP}}, {\bf{free nucleotides}} and {\bf{enzymes.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- {\bf{DNA helicase}} breaks the {\bf{hydrogen bonds}} between the bases causing the {\bf{double helix}} to {\bf{unwind}} and separate into {\bf{two strands.}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- The {\bf{exposed bases}} bind to {\bf{free floating nucleotides}} in the {\bf{nucleoplasm.}}} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{- {\bf{DNA polymerase}} binds the {\bf{complimentary nucleotides}} (forming the {\bf{phosphodiester bond).}}} \tn % Row Count 9 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{- {\bf{One strand}} acts as the {\bf{template}} for the {\bf{new molecule}}, so newly synthesised DNA contains {\bf{one parent strand}} and a {\bf{complimentary}} newly synthesised {\bf{strand.}}} \tn % Row Count 13 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Functions of DNA}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{DNA has 2 main functions in organisms} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{1. {\bf{Protein synthesis}} - the {\bf{sequence of bases}} in one strand, called the {\bf{template strand}}, determines the {\bf{order}} of {\bf{amino acids}} in the {\bf{polypeptide}} (primary structure).} \tn % Row Count 5 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{2. {\bf{Replication}} - when {\bf{cells divide}}, a complete {\bf{copy of the DNA}} in the cell needs to be made. Both DNA strands {\bf{separate}} and each strand acts as a {\bf{template}} to {\bf{synthesise}} a {\bf{complimentary strand.}}} \tn % Row Count 10 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Three theories for how DNA replicates have been proposed:} \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{1. {\bf{Conservative replication}}: {\bf{original parent}} stranded molecule is {\bf{conserved}}, and a {\bf{new double-stranded DNA }}molecule {\bf{synthesised}} from it.} \tn % Row Count 16 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{2. {\bf{Semi-conservative}} replication: {\bf{parental strands separate}}, and each strands acts as a {\bf{template}} to {\bf{synthesise}} a new strand. The new molecule consists of one original parent strand and one newly synthesised strand.} \tn % Row Count 21 (+ 5) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{3. {\bf{Dispersive:}} the {\bf{newly synthesised}} molecules contain {\bf{fragments}} from the {\bf{original parent strand}} and {\bf{newly}} synthesised DNA.} \tn % Row Count 24 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{0.92691 cm} x{2.50609 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Key Term}} \tn % Row 0 \SetRowColor{LightBackground} Silent Mutation & A {\bf{change}} in the {\bf{sequence}} of nucleotide {\bf{bases}} without a {\bf{subsequent change}} in the {\bf{amino acid.}} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Meselson-stahl experiment}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{1. Grow {\bf{bacteria}} on a {\bf{15N}} is a {\bf{heavy isotope}} of nitrogen so all DNA produced would be a {\bf{heavier weight}} than normal. When DNA was {\bf{extracted}} by {\bf{centrifuging}} in {\bf{caesium chloride}}, the DNA band appeared {\bf{low down}} in the tube.} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{2. {\bf{Bacteria}} were then grown on a {\bf{14N medium}} (normal weight nitrogen), and after {\bf{one generation}} the DNA {\bf{extracted}} formed an {\bf{intermediate band}} half way up the tube. This is because the DNA molecule contained {\bf{one strand}} from the {\bf{heavy}} parent and {\bf{one newly synthesised}} {\bf{light}} DNA strand. (Because one band was produced this {\bf{rules out conservative replication).}}} \tn % Row Count 14 (+ 8) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{3. The {\bf{bacteria}} were grown for a {\bf{further generation}} using {\bf{14N medium}}. The DNA {\bf{extracted}} formed an {\bf{intermediate band}} half way up the tube, and a {\bf{lighter band}} towards the top of the tube. Because {\bf{half}} of the DNA was {\bf{intermediate weight}} and {\bf{half light}}, this rules out {\bf{dispersive replication.}}} \tn % Row Count 21 (+ 7) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{4. {\bf{DNA}} therefore {\bf{replicates semi-conservatively.}}} \tn % Row Count 23 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{5. If grown for {\bf{further generations}} using {\bf{14N medium}}, whilst {\bf{intermediate weight}} DNA would remain, the {\bf{proportion}} of {\bf{light DNA}} produced would {\bf{increase.}}} \tn % Row Count 27 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Meselson-stahl experiment diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729102337_meselson and stahl experiment.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{DNA replication theories}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729103346_Replication theories.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{The Genetic code}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{sequence of nucleotide bases}} forms a {\bf{code}}.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Each {\bf{'code word'}} has 3 letters called a {\bf{triplet code}} or {\bf{codon}}, which codes for a {\bf{specific amino acid.}}} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{p{0.39495 cm} p{0.42128 cm} x{1.00054 cm} x{0.81623 cm} } \SetRowColor{DarkBackground} \mymulticolumn{4}{x{3.833cm}}{\bf\textcolor{white}{Genetic code examples:}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{DNA codon}} & {\bf{mRNA codon}} & {\bf{Amino acid that is coded for}} & {\bf{Amino acid abbreviation}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} GGG & CCC & Proline & Pro \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} CGG & GCC & Glycine & Gly \tn % Row Count 5 (+ 1) % Row 3 \SetRowColor{white} ATG & UAC & Tyrosine & Tyr \tn % Row Count 6 (+ 1) % Row 4 \SetRowColor{LightBackground} TAC & AUG & Methionine & Met \tn % Row Count 7 (+ 1) % Row 5 \SetRowColor{white} ACT & UGA & Stop & \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}----} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{The Genetic code part 2}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{There are {\bf{20 amino acids}} that are coded by {\bf{4power3 bases,}} i.e. {\bf{64 different combinations}} of {\bf{A, G, C, T(U).}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Therefore, there are {\bf{'spare' base codes.}}} \tn % Row Count 4 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This is referred to as {\bf{degeneracy}} or the {\bf{'degenerate code'.}}} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This code is {\bf{universal}}, i.e. it is the {\bf{same}} in {\bf{all living things.}}} \tn % Row Count 8 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{One {\bf{codon}} acts as a {\bf{START}} codon, marking the point on the {\bf{DNA}} where {\bf{transcription}} begins - this is {\bf{AUG}} on the {\bf{mRNA}} and codes for {\bf{methionine.}}} \tn % Row Count 12 (+ 4) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Each gene}} found on the DNA will code for a {\bf{different polypeptide:}} this is called the {\bf{one gene}}, one {\bf{polypeptide hypothesis.}}} \tn % Row Count 15 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Post-translational modification}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Translation}} produces a {\bf{polypeptide}}, but {\bf{further modification}} is needed in order to {\bf{produce}} a {\bf{protein}} with a {\bf{secondary, tertiary or quaternary}} structure.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This {\bf{modification}} occurs within the {\bf{Golgi body.}}} \tn % Row Count 6 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Modification}} also occurs to {\bf{produce molecules}} such as {\bf{glycoproteins, lipoproteins, and complex quaternary structures}} such as {\bf{haemoglobin.}}} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{To form {\bf{haemoglobin}}, {\bf{2 alpha chains}} and {\bf{2 beta chains}} (coded by 2 different genes) need to be assembled together with {\bf{iron}} as a {\bf{prosthetic group.}}} \tn % Row Count 14 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Protein Synthesis}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Transcription}} occurs in the {\bf{nucleus.}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Translation}} occurs at the {\bf{ribosomes.}}} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Post-translational}} modification occurs in the {\bf{Golgi apparatus}} prior to {\bf{packaging}} of the {\bf{protein}} into {\bf{vesicles.}}} \tn % Row Count 5 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Transcription}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{DNA}} acts as a {\bf{template}} for the {\bf{production}} of {\bf{mRNA.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{DNA helicase}} acts on a {\bf{specific region}} of the DNA molecule called the {\bf{cistron}}, {\bf{breaking}} the {\bf{hydrogen bonds}} between both {\bf{DNA strands}}, causing the strands to {\bf{separate}} and {\bf{unwind}}, exposing {\bf{nucleotide bases.}}} \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Free RNA nucleotide}} pair to {\bf{exposed bases}} on the {\bf{DNA template strand}} and {\bf{RNA polymerase}} joins them by {\bf{forming}} the {\bf{phosphodiester bonds}} between the {\bf{phosphate group}} on one nucleotide and the {\bf{ribose sugar}} on the next.} \tn % Row Count 12 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This continues until the {\bf{RNA polymerase}} reaches a {\bf{STOP codon}}, when the {\bf{RNA polymerase}} detaches and {\bf{production}} of {\bf{mRNA}} is complete.} \tn % Row Count 15 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{mRNA strand}} leaves the {\bf{nucleus}} via the {\bf{nuclear pores}} and moves to the {\bf{ribosomes.}}} \tn % Row Count 17 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Transcription diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729162224_transcription.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Introns and Exons}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{In {\bf{eukaryotes}}, {\bf{introns}} are present within {\bf{many genes}} so are also {\bf{transcribed}} producing {\bf{pre-mRNA.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{coding regions}} are referred to as {\bf{exons.}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{pre-mRNA}} is {\bf{spliced}} to remove the {\bf{non-coding regions}} before passing to the {\bf{ribosomes.}} In {\bf{prokaryotes}}, the DNA does not contain {\bf{introns}}, and so the {\bf{mRNA}} is {\bf{produced}} directly from the {\bf{DNA template.}}} \tn % Row Count 10 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Splicing of pre-mRNA}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729162987_splicing of pre-mRNA.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Translation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Involves another {\bf{specific RNA}} molecule called {\bf{transfer RNA}} (tRNA).} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{At one end of the {\bf{tRNA}} molecule there are {\bf{3 exposed bases}} called the {\bf{anticodon}}, these are {\bf{complimentary}} to the {\bf{mRNA codon.}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{At the opposite end of the {\bf{tRNA}} molecule is an {\bf{amino acid}} attachment site where the {\bf{relevant amino acid}} is found.} \tn % Row Count 8 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The attachment of the {\bf{relevant amino acid}} to the {\bf{attachment site}} is called {\bf{amino acid aviation}} and {\bf{requires ATP.}}} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Translation}} involves {\bf{converting}} the {\bf{codons}} on the {\bf{mRNA}} into a {\bf{sequence}} of {\bf{amino acids}} known as a {\bf{polypeptide.}}} \tn % Row Count 14 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Each {\bf{ribosome}} (found {\bf{free}} in the {\bf{cytoplasm}}, or attached to the {\bf{rough endoplasmic reticulum}}) is made up of {\bf{2 subunits}} made from {\bf{ribosomal RNA}} and {\bf{protein.}}} \tn % Row Count 18 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{mRNA binds}} to the {\bf{smaller subunit}}, whilst {\bf{tRNA}} to one of {\bf{2 attachment sites}} on the {\bf{larger subunit.}}} \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{The process of translation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Initiation}}: {\bf{ribosome}} attaches to the {\bf{START codon.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{tRNA}} molecule with a {\bf{complimentary anticodon}} to the {\bf{first codon}} to the {\bf{first codon}}, binds to the {\bf{first attachment site}} on the {\bf{ribosome.}}} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{A {\bf{second tRNA}} molecule joins to the {\bf{second attachment site}}, and a {\bf{ribosomal enzyme catalyses}} the {\bf{formation}} of a {\bf{peptide bond}} between the {\bf{2 amino acids.}} This is known as {\bf{elongation.}}} \tn % Row Count 11 (+ 5) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{first tRNA}} molecule is released and the {\bf{ribosome}} now moves {\bf{one codon}} along the {\bf{mRNA}}, which exposes a {\bf{free attachment site}} and another {\bf{tRNA molecule}} joins and the {\bf{process}} is {\bf{repeated.}}} \tn % Row Count 16 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This {\bf{repeats}} until a {\bf{STOP codon}} is reached, when the {\bf{polypeptide}} is {\bf{released.}} This is called {\bf{termination.}}} \tn % Row Count 19 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Usually {\bf{several ribosomes}} bind to a {\bf{single mRNA}} strand at the {\bf{same time.}} This is called a {\bf{polysome.}}} \tn % Row Count 22 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Translation Diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1729167667_translation.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}