\documentclass[10pt,a4paper]{article} % Packages \usepackage{fancyhdr} % For header and footer \usepackage{multicol} % Allows multicols in tables \usepackage{tabularx} % Intelligent column widths \usepackage{tabulary} % Used in header and footer \usepackage{hhline} % Border under tables \usepackage{graphicx} % For images \usepackage{xcolor} % For hex colours %\usepackage[utf8x]{inputenc} % For unicode character support \usepackage[T1]{fontenc} % Without this we get weird character replacements \usepackage{colortbl} % For coloured tables \usepackage{setspace} % For line height \usepackage{lastpage} % Needed for total page number \usepackage{seqsplit} % Splits long words. %\usepackage{opensans} % Can't make this work so far. Shame. Would be lovely. \usepackage[normalem]{ulem} % For underlining links % Most of the following are not required for the majority % of cheat sheets but are needed for some symbol support. \usepackage{amsmath} % Symbols \usepackage{MnSymbol} % Symbols \usepackage{wasysym} % Symbols %\usepackage[english,german,french,spanish,italian]{babel} % Languages % Document Info \author{lonnieRCH} \pdfinfo{ /Title (enzymes-and-biological-reactions.pdf) /Creator (Cheatography) /Author (lonnieRCH) /Subject (Enzymes and biological reactions Cheat Sheet) } % Lengths and widths \addtolength{\textwidth}{6cm} \addtolength{\textheight}{-1cm} \addtolength{\hoffset}{-3cm} \addtolength{\voffset}{-2cm} \setlength{\tabcolsep}{0.2cm} % Space between columns \setlength{\headsep}{-12pt} % Reduce space between header and content \setlength{\headheight}{85pt} % If less, LaTeX automatically increases it \renewcommand{\footrulewidth}{0pt} % Remove footer line \renewcommand{\headrulewidth}{0pt} % Remove header line \renewcommand{\seqinsert}{\ifmmode\allowbreak\else\-\fi} % Hyphens in seqsplit % This two commands together give roughly % the right line height in the tables \renewcommand{\arraystretch}{1.3} \onehalfspacing % Commands \newcommand{\SetRowColor}[1]{\noalign{\gdef\RowColorName{#1}}\rowcolor{\RowColorName}} % Shortcut for row colour \newcommand{\mymulticolumn}[3]{\multicolumn{#1}{>{\columncolor{\RowColorName}}#2}{#3}} % For coloured multi-cols \newcolumntype{x}[1]{>{\raggedright}p{#1}} % New column types for ragged-right paragraph columns \newcommand{\tn}{\tabularnewline} % Required as custom column type in use % Font and Colours \definecolor{HeadBackground}{HTML}{333333} \definecolor{FootBackground}{HTML}{666666} \definecolor{TextColor}{HTML}{333333} \definecolor{DarkBackground}{HTML}{A3A3A3} \definecolor{LightBackground}{HTML}{F3F3F3} \renewcommand{\familydefault}{\sfdefault} \color{TextColor} % Header and Footer \pagestyle{fancy} \fancyhead{} % Set header to blank \fancyfoot{} % Set footer to blank \fancyhead[L]{ \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{C} \SetRowColor{DarkBackground} \vspace{-7pt} {\parbox{\dimexpr\textwidth-2\fboxsep\relax}{\noindent \hspace*{-6pt}\includegraphics[width=5.8cm]{/web/www.cheatography.com/public/images/cheatography_logo.pdf}} } \end{tabulary} \columnbreak \begin{tabulary}{11cm}{L} \vspace{-2pt}\large{\bf{\textcolor{DarkBackground}{\textrm{Enzymes and biological reactions Cheat Sheet}}}} \\ \normalsize{by \textcolor{DarkBackground}{lonnieRCH} via \textcolor{DarkBackground}{\uline{cheatography.com/208046/cs/44582/}}} \end{tabulary} \end{multicols}} \fancyfoot[L]{ \footnotesize \noindent \begin{multicols}{3} \begin{tabulary}{5.8cm}{LL} \SetRowColor{FootBackground} \mymulticolumn{2}{p{5.377cm}}{\bf\textcolor{white}{Cheatographer}} \\ \vspace{-2pt}lonnieRCH \\ \uline{cheatography.com/lonnierch} \\ \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Cheat Sheet}} \\ \vspace{-2pt}Not Yet Published.\\ Updated 11th October, 2024.\\ Page {\thepage} of \pageref{LastPage}. \end{tabulary} \vfill \columnbreak \begin{tabulary}{5.8cm}{L} \SetRowColor{FootBackground} \mymulticolumn{1}{p{5.377cm}}{\bf\textcolor{white}{Sponsor}} \\ \SetRowColor{white} \vspace{-5pt} %\includegraphics[width=48px,height=48px]{dave.jpeg} Measure your website readability!\\ www.readability-score.com \end{tabulary} \end{multicols}} \begin{document} \raggedright \raggedcolumns % Set font size to small. Switch to any value % from this page to resize cheat sheet text: % www.emerson.emory.edu/services/latex/latex_169.html \footnotesize % Small font. \begin{multicols*}{4} \begin{tabularx}{3.833cm}{x{1.27021 cm} x{2.16279 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Key Terms}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Primary Structure}} & Formed from the order of {\bf{amino acids}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} {\bf{Condensation}} & Reaction occurs {\bf{joining}} 2 molecules together into a larger one with the {\bf{elimination of water}} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} {\bf{Secondary Structure}} & Formed from the {\bf{folding}} of the {\bf{primary structure}} into 2 main forms: the {\bf{alpha helix}} or {\bf{beta pleated sheet}} \tn % Row Count 11 (+ 5) % Row 3 \SetRowColor{white} {\bf{Tertiary Structure}} & Formed from the {\bf{folding}} of the {\bf{secondary structure}} into a {\bf{3D shape}} \tn % Row Count 15 (+ 4) % Row 4 \SetRowColor{LightBackground} {\bf{Hydrolysis}} & The {\bf{breaking down}} of large molecules into smaller ones by the {\bf{addition}} of a molecule of {\bf{water}} \tn % Row Count 20 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.27021 cm} x{2.16279 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Metabolism Terms}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Metabolism}} & A series of {\bf{enzyme-controlled}} reactions in the body. There are 2 main types: \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} {\bf{Anabolic Reactions}} & {\bf{Protein synthesis}} where amino acids are {\bf{built up}} into more {\bf{complex polypeptides}} \tn % Row Count 8 (+ 4) % Row 2 \SetRowColor{LightBackground} {\bf{Catabolic Reactions}} & {\bf{Digestion of proteins}} where {\bf{complex}} polypeptides are {\bf{broken down}} into simple {\bf{amino acids}} \tn % Row Count 13 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{x{1.40753 cm} x{2.02547 cm} } \SetRowColor{DarkBackground} \mymulticolumn{2}{x{3.833cm}}{\bf\textcolor{white}{Key Terms}} \tn % Row 0 \SetRowColor{LightBackground} {\bf{Enzyme-substrate complex}} & An {\bf{intermediate structure}} formed during an {\bf{enzyme-catalysed reaction}} in which the {\bf{substrate}} and {\bf{enzyme}} bind temporarily, such that the substrates are {\bf{close enough}} to {\bf{react}} \tn % Row Count 9 (+ 9) % Row 1 \SetRowColor{white} {\bf{Activation energy}} & The {\bf{minimum energy}} that must be put into a {\bf{chemical system}} for a {\bf{reaction}} to occur \tn % Row Count 14 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}--} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Key Points about Enzymes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{They are {\bf{proteins}} that {\bf{speed up}} chemical reactions} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{They {\bf{lower}} the {\bf{activation energy}} needed for the {\bf{reaction}} to take place} \tn % Row Count 4 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{They {\bf{don't}} actually {\bf{take part}} in the reaction} \tn % Row Count 6 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{They are only needed in {\bf{small quantities}}} \tn % Row Count 7 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{They can be {\bf{re-used}}} \tn % Row Count 8 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{They convert {\bf{substrates}} into {\bf{products}}} \tn % Row Count 9 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Therefore they can be described as {\bf{biological catalysts}}} \tn % Row Count 11 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Inhibitors}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Enzymes can be {\bf{inhibited}} by other substances, which can {\bf{either combine}} with the {\bf{active site directly}} or {\bf{bind}} to {\bf{another}} part of the enzyme to {\bf{prevent}} the {\bf{formation}} of an {\bf{enzyme-substrate complex.}}} \tn % Row Count 5 (+ 5) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{2 forms of inhibition}} exist, {\bf{competitive}} and {\bf{non-competitive}} inhibition, which may be either {\bf{reversible}} (where inhibitor binds {\bf{temporarily}}) or {\bf{irreversible}} (where the inhibitor binds {\bf{permanently}}).} \tn % Row Count 10 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Competitive Inhibition}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This is where a {\bf{molecule}} has a {\bf{similar shape}} to the {\bf{substrate}} and so it also has a {\bf{complimentary shape}} to the {\bf{active site.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{first molecule}} to {\bf{collide successfully}} with the {\bf{active site}} will form a {\bf{complex.}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{By {\bf{increasing}} the {\bf{concentration of substrate}}, the {\bf{inhibition}} is overcome, so long as the inhibition is {\bf{reversible}}, as it is more likely that a {\bf{substrate}} molecule will {\bf{form}} an {\bf{enzyme-substrate complex.}}} \tn % Row Count 10 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Competitive Inhibition diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728575377_competitive inhibition.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Competitive Inhibition Summary}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{substrate}} and {\bf{competitive inhibitor}} both 'compete' for the {\bf{active site}}. It can be {\bf{overcome}} by {\bf{increasing substrate concentration.}}} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Biosensors}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Contain {\bf{immobilised enzymes}} that can be used to {\bf{detect small concentrations}} of {\bf{specific molecules}} in a {\bf{mixture}}, e.g. glucose in a sample of blood.} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{A {\bf{biosensor}} consists of a {\bf{specific immobilised enzyme}}, a {\bf{selectively permeable membrane}}, and a {\bf{transducer}} connected to a {\bf{display.}}} \tn % Row Count 7 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{selectively permeable membrane}} allows the {\bf{metabolite}} to {\bf{diffuse}} through to the {\bf{immobilised enzyme}}, whilst {\bf{preventing}} the {\bf{passage}} of other {\bf{molecules.}}} \tn % Row Count 11 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{metabolite binds}} to the {\bf{active site}} of the enzyme, and is {\bf{converted}} into a {\bf{product}}, which in turn {\bf{combines}} with the {\bf{transducer}} turning the {\bf{chemical energy}} into an {\bf{electrical signal.}}} \tn % Row Count 16 (+ 5) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{higher}} the {\bf{concentration}} of {\bf{metabolite}} present, the {\bf{greater}} the {\bf{electrical signal.}}} \tn % Row Count 19 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This {\bf{technique}} is used to {\bf{accurately measure}} the {\bf{blood glucose}} of {\bf{diabetic parents}} whose {\bf{blood glucose}} should normally be kept between {\bf{3.89 and 5.83mmol dm-3.}}} \tn % Row Count 23 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Enzyme Structure}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Complex}} folded {\bf{polypeptide chains}} that are held together in a {\bf{complex 3D shape}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{each {\bf{amino acid}} in {\bf{primary structure}} is joined to the next by a {\bf{condensation reaction}} which forms a {\bf{peptide bond}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This structure is then {\bf{folded}} into an {\bf{alpha helix}} or {\bf{beta pleated sheet}}, held together by {\bf{hydrogen bonds}} called the {\bf{secondary structure}}} \tn % Row Count 9 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{secondary structure}} is folded again to form a {\bf{3D shape}} that is held together by {\bf{hydrogen, ionic and disulphide bonds}}} \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This creates an {\bf{active site}} where {\bf{substrates}} can {\bf{bind}}} \tn % Row Count 14 (+ 2) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{bonds}} that hold the {\bf{tertiary structure}} in place are {\bf{susceptible}} to changes in {\bf{temperature, pH}} and the action of {\bf{reducing agents}}} \tn % Row Count 18 (+ 4) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Enzymes}} act in an {\bf{aqueous environment}} because they are {\bf{soluble}} and {\bf{catalyse}} many reactions including {\bf{hydrolysis}}} \tn % Row Count 21 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{How enzymes work}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{In a {\bf{catabolic}} reaction, the {\bf{substrate}} binds to the {\bf{active site}}, forming the {\bf{enzyme-substrate complex.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The reaction proceeds and {\bf{products are released}}, the {\bf{active site}} is now {\bf{free}} to {\bf{catalyse}} another reaction.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{In {\bf{anabolic}} reactions, several {\bf{substrates}} bind and one or more {\bf{products}} are {\bf{released.}}} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{As {\bf{biological}} reactions, enzymes {\bf{lower}} the {\bf{activation energy}} needed to start a reaction by providing {\bf{energy}} to {\bf{break bonds}} in existing molecules so {\bf{new}} ones can form in new molecules. By doing so, {\bf{chemical reactions}} are {\bf{sped up.}}} \tn % Row Count 15 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Enzyme work}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728559170_enzyme image.jpeg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Intracellular and Extracellular}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Enzymes}} may act {\bf{intracellularly}}, e.g. during {\bf{protein synthesis}} where the {\bf{formation}} of a {\bf{peptide bond}} between {\bf{2 amino acids}} is {\bf{catalysed.}}} \tn % Row Count 4 (+ 4) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Or {\bf{extracellularly}} e.g. when {\bf{pancreatic amylase}} is {\bf{released}} from {\bf{pancreatic cells}} and {\bf{travels}} to the {\bf{small intestine}} via the {\bf{pancreatic duct}} where it {\bf{catalyses}} the {\bf{breakdown}} of {\bf{starch}} to {\bf{maltose.}}} \tn % Row Count 9 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Factors affecting the rate of reaction}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Rate of reaction = number of reactions that occur per second or unit time} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Enzyme action is affected by 5 things:}}} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{1. Substrate concentration} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{2. Temperature} \tn % Row Count 5 (+ 1) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{3. pH} \tn % Row Count 6 (+ 1) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{4. Enzyme concentration} \tn % Row Count 7 (+ 1) % Row 6 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{5. Presence of inhibitors} \tn % Row Count 8 (+ 1) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Product formation}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Product formation}} is {\bf{different}} from the {\bf{rate of reaction}} as it shows the {\bf{total product}} made.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Once a {\bf{plateau}} is reached, {\bf{no more product}} is formed and the {\bf{reaction}} has {\bf{stopped.}}} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{With a {\bf{rate of reaction graph}}, the rate would {\bf{drop to zero}} at this point.} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Product formation diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728574509_product formation.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Non-competitive inhibition}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{An inhibitor {\bf{binds}} to {\bf{another site}} on the enzyme (the {\bf{allosteric site).}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This binding {\bf{changes}} the {\bf{shape}} of the {\bf{active site}}, preventing {\bf{substrate}} molecules from forming an {\bf{enzyme-substrate complex.}}} \tn % Row Count 5 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{An example is {\bf{cyanide}} that {\bf{binds}} to cytochrome oxidase {\bf{inhibiting respiration.}}} \tn % Row Count 7 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Non-competitive inhibition diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728594143_non-competitve inhibition.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Non-competitive inhibition summary}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{inhibitor}} binds to an {\bf{allosteric site}} deforming the {\bf{shape}} of the enzyme's {\bf{active site}}. It {\bf{cannot}} therefore be {\bf{overcome}} by {\bf{increasing substrate concentration.}}} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Biosensor definition}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{A {\bf{device}} that {\bf{combines}} a {\bf{biomolecule}} such as an {\bf{enzyme}}, with a {\bf{transducer}}, to {\bf{produce}} an {\bf{electrical signal}} which {\bf{measures}} the {\bf{concentration}} of a {\bf{chemical.}}} \tn % Row Count 4 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Biosensor diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728603374_biosensor.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Lock and Key Model}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{substrate}} has a {\bf{complimentary shape}} to the enzyme's {\bf{active site}}, like a key fitting into a lock.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This explains the {\bf{specificity}} of many {\bf{enzymes}} i.e. that many only {\bf{catalyse}} one {\bf{substrate.}}} \tn % Row Count 6 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Lock and key diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728564359_lock and key.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Induced fit model}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Many {\bf{observations}} show that the enzymes {\bf{active site}} was being {\bf{altered}} by the {\bf{binding substrate}} molecule.} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{induced fit theory}} suggests that the {\bf{active site}} is able to {\bf{change}} slightly to {\bf{accommodate}} the substrate.} \tn % Row Count 6 (+ 3) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This change places {\bf{strain}} on the {\bf{substrate}} molecule, helping to {\bf{break bonds}} and so {\bf{lowering}} the {\bf{activation energy.}}} \tn % Row Count 9 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{This explains why in some cases {\bf{several molecules}} with {\bf{similar shapes}} are able to {\bf{bind}} to the {\bf{active site.}}} \tn % Row Count 12 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This is shown by the {\bf{enzyme lysosome}}, which is an {\bf{anti-bacterial}} enzyme found in {\bf{human tears}} and {\bf{saliva.}}} \tn % Row Count 15 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{active site}} consists of a {\bf{groove}}, which closes over the {\bf{polysaccharides}} found in the {\bf{bacterial cell walls}}, and the enzyme molecule {\bf{changes shape}}, which allows {\bf{hydrolysis}} to occur.} \tn % Row Count 20 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Induced fit diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728564410_induced fit.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Substrate concentration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{When the {\bf{substrate concentration increases}} in an {\bf{enzyme-controlled reaction}}, there is a {\bf{greater chance}} of a successful {\bf{collision}} between the {\bf{substrate}} and the {\bf{enzyme}} resulting in {\bf{more enzyme-substrate complexes}} forming which {\bf{increases}} the {\bf{rate of reaction.}}} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{When all the {\bf{enzyme active sites}} are {\bf{occupied}}, a {\bf{plateau}} is reached which represents the {\bf{maximum rate of reaction}} for their {\bf{conditions.}}} \tn % Row Count 10 (+ 4) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Substrate concentration diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728571225_substrate concentrations.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Enzyme concentration}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{When the {\bf{substrate concentration increases}} in an {\bf{enzyme-controlled reaction}}, there is a {\bf{greater chance}} of a {\bf{successful collision}} between the {\bf{substrate}} and {\bf{enzyme}} so more {\bf{enzyme-substrate complexes}} are formed, thus {\bf{increasing}} the {\bf{rate of reaction.}}} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{As long as {\bf{substrate}} is {\bf{present in excess}} this will continue to {\bf{rise}} so long as there are {\bf{no limiting factors.}}} \tn % Row Count 9 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Enzyme concentration diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728574133_enzyme concentration.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{End product inhibition}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Often seen in {\bf{complex metabolic pathways}} where {\bf{several enzymes}} are involved.} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{It is an example of {\bf{competitive inhibition}} at work in cells, and {\bf{prevents}} the {\bf{build-up}} of the {\bf{end product}} in the pathway, which {\bf{could}} become {\bf{harmful.}}} \tn % Row Count 6 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{In essence, the {\bf{product}} of {\bf{one reaction}} acts as the {\bf{substrate}} for the {\bf{next}}, and the {\bf{end product}} acts as a {\bf{competitive inhibitor}} for an {\bf{enzyme}} earlier in the {\bf{pathway.}}} \tn % Row Count 10 (+ 4) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{In the example below, the {\bf{end product inhibits enzyme 1}}: as the {\bf{end product}} is {\bf{used up}} in the {\bf{cell}}, the concentration of {\bf{end product falls}} and the {\bf{concentration}} of the {\bf{initial substrate rises}}, so {\bf{overcoming}} the inhibitor's effect} \tn % Row Count 16 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{End product inhibition diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728594341_end-product inhibition].jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Advantages of immobilised enzymes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{1. {\bf{Enzymes}} can be {\bf{easily recovered}} and {\bf{reused.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{2. Product is {\bf{not contaminated}} by the enzyme .} \tn % Row Count 3 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{3. More {\bf{stable}} at {\bf{higher temperature.}}} \tn % Row Count 4 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{4. {\bf{Catalyse}} reactions at a {\bf{higher}} range of {\bf{pH.}}} \tn % Row Count 6 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The result is that {\bf{several enzymes}} with {\bf{different temperature}} and {\bf{pH}} optima can be used at the {\bf{same time.}}} \tn % Row Count 9 (+ 3) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Enzymes}} can also be {\bf{easily added}} or {\bf{removed}} giving {\bf{greater control}} over the {\bf{reaction.}}} \tn % Row Count 12 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Temperature}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{When the {\bf{temperature}} of an {\bf{enzyme}} and {\bf{substrate increases}} in an {\bf{enzyme-controlled reaction}}, both the {\bf{enzyme}} and {\bf{substrate}} molecules {\bf{gain more kinetic energy}} and so move {\bf{faster}}, {\bf{increasing}} the chance of a {\bf{successful collision}} between them.} \tn % Row Count 6 (+ 6) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{As more {\bf{enzyme-substrate complexes}} are formed, the {\bf{rate of reaction decreases}} rapidly as {\bf{hydrogen bonds}} in the {\bf{tertiary structure break}} due to {\bf{increased vibrations}} resulting in a change to the shape of the {\bf{active site}} - this is called {\bf{denaturing.}}} \tn % Row Count 12 (+ 6) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Temperature diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728571340_Temperature.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{pH}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{When the {\bf{pH}} of an enzyme {\bf{increases or decreases}} either side of the {\bf{optimum}}, the {\bf{rate of reaction decreases.}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{The {\bf{charges}} on the {\bf{amino acid side chains}} (R groups) that make up the {\bf{enzyme's active site}} are influenced by {\bf{free hydrogen}} (H+) and {\bf{hydroxyl}} (OH-) ions.} \tn % Row Count 7 (+ 4) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{If {\bf{too many}} H+ or OH- ions are {\bf{present}}, the {\bf{substrate}} can be {\bf{repelled}} from the {\bf{active site}}, preventing it from {\bf{binding.}}} \tn % Row Count 10 (+ 3) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{If these {\bf{changes}} are {\bf{relatively minor}}, then it is {\bf{reversible.}}} \tn % Row Count 12 (+ 2) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{More {\bf{excessive changes}} in {\bf{pH}} will result in the {\bf{ionic bonds}} in the {\bf{tertiary structure}} breaking which causes {\bf{denaturing}} by creating a {\bf{permanent change}} to the {\bf{shape}} of the {\bf{active site.}}} \tn % Row Count 17 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{pH diagram}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728572101_pH.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{pH Optimum}} \tn \SetRowColor{LightBackground} \mymulticolumn{1}{p{3.833cm}}{\vspace{1px}\centerline{\includegraphics[width=5.1cm]{/web/www.cheatography.com/public/uploads/lonnierch_1728572130_pH optimum.jpg}}} \tn \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Use of buffers in enzyme experiments}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The rate of an {\bf{enzyme-controlled reaction}}, is greatly influenced by {\bf{small changes}} in {\bf{pH.}}} \tn % Row Count 2 (+ 2) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{It is therefore {\bf{essential}}, when carrying out any {\bf{enzyme experiment}} (where pH is not the independent variable), that {\bf{pH is controlled}}, ideally at its {\bf{optimum}}, so it is {\bf{not limiting}} the {\bf{rate of reaction.}}} \tn % Row Count 7 (+ 5) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{This can be {\bf{achieved}} by using a {\bf{pH buffer.}}} \tn % Row Count 8 (+ 1) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{A {\bf{buffer}} is a solution that can {\bf{resist changes}} in pH by {\bf{neutralising acid}}/alkalis that are {\bf{added}} to the {\bf{solution.}}} \tn % Row Count 11 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{In the body, we {\bf{buffer}} the {\bf{pH of the blood}} around {\bf{7.4}} by using {\bf{2 chemicals}} - {\bf{carbonic acid}} and {\bf{bicarbonate.}}} \tn % Row Count 14 (+ 3) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Buffer Summary}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{A {\bf{chemical}} that {\bf{resists changes}} in {\bf{pH.}}} \tn % Row Count 1 (+ 1) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Neutralises excess}} acids or alkslis.} \tn % Row Count 2 (+ 1) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{Can be used to {\bf{maintain}} the {\bf{optimum pH}} for a given reaction.} \tn % Row Count 4 (+ 2) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} \begin{tabularx}{3.833cm}{X} \SetRowColor{DarkBackground} \mymulticolumn{1}{x{3.833cm}}{\bf\textcolor{white}{Importance of immobilised enzymes}} \tn % Row 0 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{{\bf{Immobilised enzymes}} are enzymes that are {\bf{fixed}} to an {\bf{inert matrix. }}This can be achieved in {\bf{2 main ways:}}} \tn % Row Count 3 (+ 3) % Row 1 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{1. {\bf{Entrapment}} - held inside a {\bf{gel}} e.g. silica gel.} \tn % Row Count 5 (+ 2) % Row 2 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{2. {\bf{Micro-encapsulation}} - trapped inside a {\bf{micro-capsule}} e.g. alginate beads.} \tn % Row Count 7 (+ 2) % Row 3 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{{\bf{Beads}} containing the {\bf{enzyme}} can be packed into a {\bf{glass column}}, and {\bf{substrate}} added at {\bf{one end.}}} \tn % Row Count 10 (+ 3) % Row 4 \SetRowColor{LightBackground} \mymulticolumn{1}{x{3.833cm}}{The {\bf{rate of flow}} of the {\bf{substrate}} over the {\bf{beads}} can be {\bf{controlled}}: a {\bf{slow flow rate}} will give {\bf{more time}} for the {\bf{enzyme-substrate complexes}} to {\bf{form}}, and therefore {\bf{yield more product.}}} \tn % Row Count 15 (+ 5) % Row 5 \SetRowColor{white} \mymulticolumn{1}{x{3.833cm}}{Because the {\bf{enzymes}} are {\bf{contained}} within their own {\bf{'micro-environment'}}, the enzymes are {\bf{less susceptible}} to changes in {\bf{pH, temperature}} and the action of {\bf{chemicals}} such as {\bf{organic solvents.}}} \tn % Row Count 20 (+ 5) \hhline{>{\arrayrulecolor{DarkBackground}}-} \end{tabularx} \par\addvspace{1.3em} % That's all folks \end{multicols*} \end{document}