Cheatography

Biological molecules Cheat Sheet by lonnieRCH via cheatography.com/208046/cs/44498/

Key Terms		Inorganic I
Conden- sation	The removal of a water molecule to form a bond between 2 molecules.	Calcium
Hydrolysis	The chemical addition of a water molecule to break a bond between 2 molecules.	Phosphate
lon	A charged atom or molecule that has	
	gained or lost	Carbohydr
	electrons.	Structure:
lsomer	Molecules with the same chemical formula, but with a different arrang- ement of atoms	Small orga containing hydrogen. Function:
		Building bl

Should be able to recognise the structural formulae of the main biological molecules and show how bonds are formed. See pg.8

Inorganic lons

Magnesium	Constituent of	
	chlorophyll ->	I
	needed for	l
	photosynthesis.	
	When lacking,	
	leaves appear	
	yellow (chlorosis).	
Iron	Constituent of	
	haemoglobin, so	
	is involved in	
	transport of	
	oxygen. A diet	
	deficient in iron	
	can lead to	

organic lons (cont)		
Ilcium	Structural	
	component of	
	bones and teeth	
	(phosphate is also	
	required).	
osphate	Needed for making	
	nucleotides	
	including ATP. A	
	constituent part of	
	phospholipids in	
	cell membranes.	

rbohydrates

mall organic molecules ontaining carbon, oxygen and /drogen.

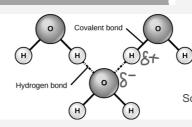
unction:

uilding blocks for more complex molecules, e.g. ribose, which forms a constituent molecule of RNA Source of energy, e.g. glucose Energy storage molecules, e.g. glycogen and starch Structural support, e.g. cellulose and chitin

ey term

Dipolar	A polar molecule		
	with a positive and		
	negative charge.		
Hydrogen	Weak attractive		
oond	force between a		
	positively charged		
	hydrogen atom and		
	a negatively		
	charged oxygen or		
	nitrogen atom.		

Water Structure


It is a dipolar molecule - Has a positively charged hydrogen end and a negatively charged oxygen end but no overall charge.

Hydrogen bonds easily form between the hydrogen on one molecule and the oxygen on another.

Individually water molecules are weak however together they are strong.

The majority of water's properties arise from its dipolar nature and hydrogen bonding.

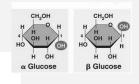
Water Molecule

All contain carbon, hydrogen and oxygen (CH2O)n where n is a number between 3 and 6.

The triose sugars are important in respiration pathways.

Pentose sugars such as ribose and deoxyribose are important constituents of nucleic acid and deoxyribonucleic acid (DNA)

Glucose is a hexose sugar.


Other hexose sugars include galactose and fructose.

Isomers are substances that have the same formula but different structures.

The isomers of glucose are aglucose and b-glucose.

For Carbon no.1 of a-glucose the hydroxyl group (OH) is in the down position whereas visa versa for b-glucose

Alpha and Beta Glucose

Properties

Solvent

Involved in many biological reactions, e.g. hydrolysis and condensation - Allows polar molecules e.g. glucose and ions, to dissolve. It a transport medium e.g. blood.

anaemia.

Not published yet. Last updated 4th October, 2024. Page 1 of 2.

Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

Biological molecules Cheat Sheet by lonnieRCH via cheatography.com/208046/cs/44498/

Water Prope	erties (cont)	Water Prop	perties (cont)	Water Pro	operties (cont)	Polysaccharides
High specific heat capacity	Large amount of heat energy needed to increase the temp of a body of water (due to large number of hydrogen bonds that need to be broken) large fluctuations in temperature are prevented. Aquatic environments are therefore relatively thermally stable.	Cohesion	Water molecules attract each other and form hydrogen bonds between themselves. This allows water to be drawn up the xylem vessels of trees, and creates surface tension allowing insects such as the pond skater to be supported. Water also provides support for other	parent Disacchar Formed b ccharides Involves t of water a glycosidic sation rea	y joining 2 monosa - together the loss of a molecule and the formation of a bond , via a conden -	Formed when many monosa- ccharides combine together to make a polymer They are good energy storage molecules because: -Unable to diffuse out of the cell
High latent heat of vapori- sation	Large amounts of heat energy are needed to vaporise water, so it is often used as a cooling mechanism e.g. sweating in mammals.	High density	aquatic organisms e.g. jellyfish Water has a maximum density at 4degreesC: as a result, ice floats, and acts as an insulator preventing	Hydrolysis	a-glucose maltose a-glucose maltose a-glucose molecules, making maltose s of Maltose	
Metabolite	It is involved in many biochemical reactions , e.g. hydrolysis and condensation and as a reactant in photosynthesis.	the water beneath from freezing completely , protecting the aquatic habitat.	addition of water,	accharides into monosaccharides involves th known as hydrolysis.	K CH	

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Disacc- haride	Component Monosa- ccharides	Biological Role
Maltose	Glucose + glucose	In germin- ating seeds
Sucrose	Glucose + fructose	Transport in phloem flowing plants
Lactose	Glucose + galactose	ln mammalian milk

C

By lonnieRCH cheatography.com/lonnierch/

Not published yet. Last updated 4th October, 2024. Page 2 of 2. Sponsored by Readable.com Measure your website readability! https://readable.com