Cheatography

Biological molecules Cheat Sheet by lonnieRCH via cheatography.com/208046/cs/44498/

Key Terms		Inorganic I
Conden- sation	The removal of a water molecule to form a bond between 2 molecules.	Calcium
Hydrolysis	The chemical addition of a water molecule to break a bond between 2 molecules.	Phosphate
lon	A charged atom or	
	molecule that has gained or lost	Carbohydr
	electrons.	Structure:
Isomer	Molecules with the same chemical formula, but with a different arrang-	Small orga containing hydrogen .
		Function:
	ement of atoms	Building bl

Structures

Should be able to recognise the structural formulae of the main biological molecules and show how bonds are formed. See pg.8

Inorganic lons

Magnesium	Constituent of	
	chlorophyll ->	1
	needed for	ļ
	photosynthesis.	
	When lacking,	
	leaves appear	
	yellow (chlorosis).	
Iron	Constituent of	
	haemoglobin, so	
	is involved in	
	transport of	
	oxygen. A diet	
	deficient in iron	
	can lead to	

anaemia.

organic Ion	is (cont)	
alcium	Structural	
	component of	
	bones and teeth	
	(phosphate is also	
	required).	
nosphate	Needed for making	
	nucleotides	
	including ATP. A	
	constituent part of	
	phospholipids in	
	cell membranes.	

arbohydrates

mall organic molecules ontaining carbon, oxygen and ydrogen.

unction:

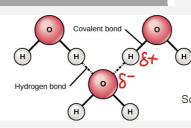
uilding blocks for more complex molecules, e.g. ribose, which forms a constituent molecule of RNA Source of energy, e.g. glucose Energy storage molecules, e.g. glycogen and starch Structural support, e.g. cellulose and chitin

Key terms

k

Dipolar	A polar molecule with a positive and negative charge.
Hydrogen bond	Weak attractive force between a positively charged hydrogen atom and a negatively charged oxygen or nitrogen atom.

Water Structure


It is a dipolar molecule - Has a positively charged hydrogen end and a negatively charged oxygen end but no overall charge.

Hydrogen bonds easily form between the hydrogen on one molecule and the oxygen on another.

Individually water molecules are weak however together they are strong.

The majority of water's properties arise from its dipolar nature and hydrogen bonding.

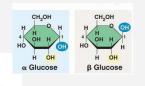
Water Molecule

All contain carbon, hydrogen and oxygen (CH2O)n where n is a number between 3 and 6.

The triose sugars are important in respiration pathways.

Pentose sugars such as ribose and deoxyribose are important constituents of nucleic acid and deoxyribonucleic acid (DNA)

Glucose is a hexose sugar.


Other hexose sugars include galactose and fructose.

Isomers are substances that have the same formula but different structures.

The isomers of glucose are aglucose and b-glucose.

For Carbon no.1 of a-glucose the hydroxyl group (OH) is in the down position whereas visa versa for b-glucose

Alpha and Beta Glucose

Properties

Solvent Involved in many

biological reactions, e.g. hydrolysis and condensation - Allows polar molecules e.g. glucose and ions, to dissolve. It a transport medium e.g. blood.

By IonnieRCH cheatography.com/lonnierch/ Not published yet. Last updated 4th October, 2024. Page 1 of 2.

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Cheatography

Biological molecules Cheat Sheet by lonnieRCH via cheatography.com/208046/cs/44498/

Water Prope	erties (cont)	Water Prop	perties (cont)	Water P	roperties (cont)	Polysaccharides
High specific heat capacity	Large amount of heat energy needed to increase the temp of a body of water (due to large number of hydrogen bonds that need to be broken) large fluctuations in temperature are prevented. Aquatic environments are therefore relatively	Cohesion	Water molecules attract each other and form hydrogen bonds between themselves. This allows water to be drawn up the xylem vessels of trees, and creates surface tension allowing insects such as the pond skater to be supported. Water also provides	ccharide Involves of water	by joining 2 monosa- as together the loss of a molecule and the formation of a ic bond , via a conden-	Formed when many monosa- ccharides combine together to make a polymer They are good energy storage molecules because: -Unable to diffuse out of the cell
High latent heat	thermally stable. Large amounts of heat energy are	Lieb	support for other aquatic organisms e.g. jellyfish Water has a	Gormatic	on of Maltose	↓
of vapori- sation	needed to vaporise water, so it is often used as a cooling mechanism e.g. sweating in mammals.	High density	maximum density at 4degreesC: as a result, ice floats, and acts as an insulator preventing	Hydrolys	glycosidic b dic bond between two glucase molecules, making mattase sis of Maltose disaccharides into monosaccharides involves th	
Metabolite	It is involved in many biochemical reactions , e.g. hydrolysis and condensation and as a reactant in		the water beneath from freezing completely , protecting the aquatic habitat.	addition of wate	fisaccharides involves u r, known as hydrolysis. 0	K Chernical
photosy	photosynthesis.			Disacc		1

Disacc- haride	Component Monosa- ccharides	Biological Role
Maltose	Glucose + glucose	In germin- ating seeds
Sucrose	Glucose + fructose	Transport in phloem flowing plants
Lactose	Glucose + galactose	ln mammalian milk

\mathbf{C}

By lonnieRCH cheatography.com/lonnierch/

Not published yet. Last updated 4th October, 2024. Page 2 of 2. Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com