Whiteboard Interview Cheat Sheet by longmatt via cheatography.com/195565/cs/40992/

Big O Notation		
Definition:	Way of estimating the complexity of an algorithm by measuring how it's operations scale as the input size grows	
Worst Case:	Big O is only concerned with the worst case scenario	
Simplific- ation:	Constants do not matter. Smaller terms do not matter. Always know what n is	
Hints:	Arithmetic is constant as is variable assignment and accessing elements in an array or object by index or key;	
Common Runtimes:	Constant: O(1) Logarithmic O(log n) Linear O(n) Logari- thmic O(n log n) Quadratic O(n2) Exponential O(2n)	
Stacks and	Queues	
Queues:	First in first out. Items only added to the back and only removed from the front. Use linked lists for implementation because removing from the front of an array is O(n)	
Stacks:	Last in first out. Items only added and removed from the back (or top like a stack of pancakes). Arrays are fine for stacks because push and pop are both Q(1)	

Trees		
Trees:	A data structure that organizes and stores data in a hierar- chical tree like fashion.	
Tree Termin- ology:	Node: basic unit, children: nodes directly below a node, descendants: nodes below a node, parent: node directly above a node, ancestor: node above a node, root: node at the top of the tree, leaf node: node without any children	
Tree example	Filesystems, HTML DOM, s: Taxonomy	
Types:	n-ary tree's can have any number of children. Binary trees: trees where each node has 0,1 or 2 children	
Graphs		
Defini- tion:	Like trees except the can contain loops (cycles) also relationships can be directed or undirected.	
Termin ology:	Node (Vertex) basic unit, Edge: connects two nodes, Adjacent: two nodes that share an edge, Weight: optional parameter for edges (like price)	
Node Class:	just needs this.name and this.a- diacent	

Graphs (cont)

```
Graph Class:
             this.nodes = new Set()
Bubble and Merge Sort Example
function bubbleSort(arr) {
       for(let i = 0; i <
arr.le ngth; i++){
              for(let j = 0; j
< arr.le ngth-i; j++){
                        con -
sol e.l og( arr);
                       if( -
arr[j] > arr[j + 1]) {
                               1
et newVal = arr[j + 1];
arr[j + 1] = arr[j];
arr[j] = newVal;
             }
         }
     }
}
const merge = (arr1, arr2) => {
 let output = [];
  let arrOneIdx = 0;
 let arrTwoIdx = 0;
   while (arrOneIdx < arr1.1 -</pre>
ength && arrTwoIdx < arr2.1 -</pre>
ength) {
     if (arr1[ arr OneIdx] <
arr2[a rrT woIdx]) {
     out put.pu sh( arr -
1[a rr0 neI dx]);
         arr One Idx++;
      } else {
          out put.pu sh( arr -
2[a rrT woI dx]);
          arr Two Idx++;
     }
  }
   whi le( arr OneIdx <
arr1.l ength) {
```

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

By longmatt cheatography.com/longmatt/

Published 23rd October, 2023. Last updated 23rd October, 2023. Page 1 of 5.

Whiteboard Interview Cheat Sheet by longmatt via cheatography.com/195565/cs/40992/

Bubble and Merge Sort Example (cont)	JavaScript -	Tricky Parts (cont)	JavaScrip	t Tricky Parts (cont)
<pre>> output.push(arr1[arrOneldx]); arrOneldx ++ } while(arrTwoldx < arr2.length){ output.push(arr2[arrTwoldx]); arrTwoldx ++ } return output;</pre>	Scope:	In JavaScript, scope refers to the context in which variables and functions are declared and can be accessed. There are two main types of scope: global scope (accessible from anywhere in your code) and local scope (limited to a	Closure use cases: Prototype	 Data encapsulation, ie create private variables. 2) Function Factories: use closers create and return functions 3) Callback functions Event Handling The prototype is an object on
}; function mergeSort(arr) {		specific function or block of code).		every JS object that contains properties and methods that aren't on the object itself, this allows for the sharing and inheritance of functionality, JS classes use the prototype under the hood.
<pre>if (arr.length <= 1) return arr; let mid = Math.floor(arr.length / 2); let left = mergeSort(arr.slice(0, mid)); let right = mergeSort(arr.slice(mid)); return merge(left, right); }</pre>	Nested Functions:	 When you have a function defined inside another function, the inner function has access to the variables and parameters of the outer function. This is where closures come into play. rs A closure is created when an inner function references variables from its containing 		
			The 'new' keyword:	The new keyword does four things 1) Creates an empty object 2) Set this to be that
JavaScript Tricky Parts Closures: A closure occurs when a function remembers it's scope	Closers revisited:			object 3) Returns the object 4) Creates a link to that objects prototype
even after that function has finished executing.		(outer) function, and that inner function is returned or passed	Divide and	d Conquer
		around. This allows the inner function to maintain access to the outer function's variables even after the outer function has completed its execution.	Defini- tion:	Given a data set divide and conquer removes a large fraction of the data set at each step
			Binary Search:	data must be structured, for example a sorted array

By longmatt

cheatography.com/longmatt/

Published 23rd October, 2023. Last updated 23rd October, 2023. Page 2 of 5. Sponsored by ApolloPad.com

Everyone has a novel in them. Finish Yours!

https://apollopad.com

Whiteboard Interview Cheat Sheet by longmatt via cheatography.com/195565/cs/40992/

Divide and Conquer (cont)		
Tips:	make sure data is structured, if you can solve it quickly with linear search try binary search. Watch out for one of errors.	
Runtime	O(log n) because it cuts the data set in 1/2 each step	
Recursio	n	
Defini- tion:	A powerful programing technique that involves a function calling itself	
Loops:	All loops can be written with recursion and visa versa	
Base Case:	The base case is required, every recursive function needs one it's what tells the function when it's done. Without a base case you'll get a stack overflow.	
Use Cases:	Filesystems, Fractals, Parsing, Nested Data	
Binary S	earch Trees	

Defini- A binary tree for efficient tion: searching and sorting.

Binary Search Trees (cont)

Rules:	1) Each node must only have at max two children. 2) The nodes are organized where all nodes in the left subtree are < than the nodes value and all the nodes in the right subtree have values greater than the	
	nodes value.	
Traversal:	Typically uses recursion for traversal with either In Order, Pre Order or Post Order Traversal methods.	
In order example: traverse(node) { if (node.left) traverse(node.left); console.log(node.val); if (node.right) traverse(node.right); }		

BFS and DFS

```
class treeNode {
   con str uct or (val, children
= []) {
       thi s.val = val;
       thi s.c hildren =
children;
  }
   dep thF irs tFi nd(val) {
     let toVisi tStack =
[this];
       while (toVis itS tac -
k.l ength) {
          let current =
toVisi tSt ack.pop();
          con sol e.l og(" -
Vis iti ng", curren t.val);
          if (current === val)
{
```

By longmatt

cheatography.com/longmatt/

Published 23rd October, 2023. Last updated 23rd October, 2023. Page 3 of 5.

BFS and DFS (cont)

```
>
       return current.val;
    }
    for (let child of current.children) {
     toVisitStack.push(child);
    }
  }
 }
 breathFirstFind(val) {
  let toVisitQueue = [this];
  while (toVisitQueue.length) {
    let current = toVisitQueue.shift();
    console.log('visiting', current.val);
    if (current === val) {
     return current;
    }
    for (let child of current.children) {
     toVisitQueue.push(child);
    }
  }
 }
}
```

Whitebo	barding Process
Step 1:	Listen carefully
Step 2:	Repeat the question back in your own words
Step 3:	Ask clarifying statements like edge cases.
Step 4:	Write test cases

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com

Whiteboard Interview Cheat Sheet by longmatt via cheatography.com/195565/cs/40992/

Whiteb	oarding	g Process (cont)
Step 5:	Write argum	down requirements; like nents, what it returns etc
Step 6:	Write pseudo code	
Step 7:	Code	
Step 8:	Test y	rour code, be the computer
Step 9:	Try to optimize, clean up code, be prepared to talk about runtime/ Big O	
Tips:	Use good variable names, don't brush past tricky parts, limit use of built in methods, take your time they want you to think deeply and approach it methodically it's not a race	
Problem Solving Process		
1) Understand the		restate it in your own words, understand the inputs and outputs

the	outputs
problem	
2) Explore Examples	start with simple examples, move to more complex examples
3) Break it down	write out the steps, write pseudocode
4) Solve a simpler problem	if your stuck solve the parts of the problem that you can and come back to the bard part

Problem Solving Process (cont)

and refactor improve performance?	5) Use tools	debug, console.log etc
	and refactor	improve performance?

Binary Search Example:

```
function binarySearch(arr, val)
{
  let leftIdx = 0;
  let rightIdx = arr.length -
1;
   while (leftIdx <= rightIdx)</pre>
{
      // find the middle value
       let middleIdx = Math.f -
loo r(( leftIdx + rightIdx) /
2);
      let middleVal = arr[mi -
ddl eIdx];
      if (middleVal < val) {
          // middleVal is too
small, look at the right half
          leftIdx = middleIdx
+ 1;
     } else if (middleVal >
val) {
          // middleVal is too
large, look at the left half
      rig htIdx =
middleIdx - 1;
     } else {
          // we found our
value!
```

```
return middleIdx;
}
// left and right pointers
crossed, val isn't in arr
return -1;
}
```

C

By longmatt

cheatography.com/longmatt/

Published 23rd October, 2023. Last updated 23rd October, 2023. Page 4 of 5. Recursive Examples

```
/* product: calculate the product
numbers. /
function produc t(nums) {
// base case
if(num s.l ength === 0) return 1;
// normal case
return nums[0] * produc t(n ums.sl
}
/* longest: return the length of t
word in an array of words. /
function longes t(w ords) {
  // base case
   if (words.length === 0) return
  // normal case
   const curren tLength = words[
   const remain ing Words = words
   const maxLength = longes t(r e
ords);
   return Math.m ax( cur ren tLe
gth);
}
/* every0 ther: return a string wi
letter. /
function every0 the r(str) {
  // base case
  if (str.l ength === 0) return "
  // normal case
   const curren tLetter = str[0];
   const remain ing Letters = str
   returs{curr ent Let ter }${ ev
r ema ini ngL ett ers)};
}
```

Sponsored by **ApolloPad.com** Everyone has a novel in them. Finish Yours! https://apollopad.com

Whiteboard Interview Cheat Sheet by longmatt via cheatography.com/195565/cs/40992/

```
Recursive Examples (cont)
```

```
> /* isPalindrome: checks whether a string is
a palindrome or not. /
function isPalindrome(str) {
    // base case
    if (str.length === 0 || str.length === 1)
    return true;
    // normal case
    if (str[0].toLowerCase() === str[str.length -
1].toLowerCase()) {
        return isPalindrome(str.slice(1, str.length -
1));
    } else return false;
}
```

Frequency Counter and Multiple Pointers Example

```
function findFreq(string) {
      let stringFreq = {};
       for(let char of string) {
               str ing Fre -
q[char] = string Fre q[char] + 1
|| 1
      }
       return stringFreg
}
function constr uct Not e(m -
ess aage, letters) {
      const messFreq =
findFr eq( mes saage);
      const lettFreq =
findFr eq( let ters);
      for(let char in
messFreq) {
               if( !le ttF -
req [char]) return false;
               if( mes sFr -
eq[ char] > lettFr eq[ char])
return false;
     }
       return true;
}
function averag ePa ir( array,
target) {
```

```
arget) {
```

С

By longmatt cheatography.com/longmatt/

```
Frequency Counter and Multiple Pointers
Example (cont)
```

```
> let left = 0;
let right = array.length - 1;
while (left < right) {
    const average = right + left / 2;
    if (average === target) return true;
    else if (average > target) right -= 1;
    else left += 1;
}
```

return false;

```
}
```

Frequency Counter and Multiple Pointers Example function findFreq(string) { let stringFreq = {}; for(let char of string) { str ing Fre q[char] = string Fre q[char] + 1 || 1 } return stringFreq } function constr uct Not e(m ess aage, letters) { const messFreq = findFr eq(mes saage); const lettFreq = findFr eq(let ters); for(let char in messFreq){ if(!le ttF req [char]) return false; if(mes sFr eq[char] > lettFr eq[char]) return false; } return true; } function averag ePa ir(array, target) { let left = 0;

Published 23rd October, 2023. Last updated 23rd October, 2023. Page 5 of 5. Frequency Counter and Multiple Pointers Example (cont)

```
> let right = array.length - 1;
while (left < right) {
    const average = right + left / 2;
    if (average === target) return true;
    else if (average > target) right -= 1;
    else left += 1;
}
return false;
```

}

Sponsored by ApolloPad.com Everyone has a novel in them. Finish Yours! https://apollopad.com