Cheatography

Haskell patterns Cheat Sheet
by logcat via cheatography.com/27075/cs/12218/

function composition

application operator, has low, right-associative binding precedence, for example £ $ g

$h x = £ (g (hx))

typeclass where empty/append are defined

mempty : M onoid a => a
mappend :: Monoid a => a -> a -> a
<> : : Monoidm=>m ->m
mconcat :: [a] -> a

->m

identity of mappend (mappend mempty x = x)

append two monoids (associative: brackets does not matter)
mappend x (mappend y z) = mappend (mappend x y) z

infix synonym for mappend (" he™ <> " 1lo ")

fold list using mappend and mempty

typeclass where fmap (map/<$>) is defined
should satisfy laws
Functor £ => (a -> b)

fmap ::

<$> :: Functor f => (a -> b)

-> fa->fb

-> fa->fb

fmap id == id

fmap (£ . g) == fmap f . fmap g

map function over functor

fmap (+1) (Just 3) is Just 4

function mapped over functor
infix synonym for fmap
(+1) <$> (Just 3) is Just 4

typeclass where pure/<*> are defined

have Functor as super class

pure :: Applic ative f => a -> f a

(<* >) :: Applic ative f => f

(a -> Db)

every instance of Applic ative must have instance of Functor

SO fmap (map/<$>) can be used

create an instance of Applicative

pure 3 [Int] is [3]

pure 3 :: Maybe Intis Just 3

pure (+3) :: Maybe (Int -> Int) is Just a function from Int
to Int

pure (+3) [Int -> Int] is list of function

pure 1 I0 Int is how itis printed in ghci

-> f a->f sequential application / apply
Just (+1) <*> Just 1

[(+1),

: Maybe Intis Just 2

(+2)1 <*> [0] [Int]is [1, 2]

By logcat
cheatography.com/logcat/

Published 5th July, 2017.
Last updated 5th July, 2017.
Page 1 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/logcat/
http://www.cheatography.com/logcat/cheat-sheets/haskell-patterns
http://www.cheatography.com/logcat/
https://readable.com

Cheatography [

via
Monad
typeclass
have Applic ative as super class every instance of Monad must have instance of Applic ative and Functor
S0 fmap (map/<$>) and <*>/pure can be used
return :: Monad m => a -> m a is pure
(>>) :: Monad m => m a ->m b -> m b sequentially compose two monads, first is usually
Just 2 >> Just 3is Just 3
Nothing >> Just 3is Nothing
[9, 9] >> [0, O, 0]is[0,0,0 ,0,0,0]
(>>=) :: Monad m => m a -> (a ->mb) ->m b bind, sequentially compose two monads, value of first passed as argument to
the second
Just 3 >>= \x -> Just (x + 1) isJust 4
Nothing >>= \x -> Just (x + 1) isNothing
[0, 0] >=\x -> [x + 1]is[1, 1]
[0, 0] >>=1\x -> [x + 1, 2]is[1,2,1,2]
[1 >>=\x -> [x + 1]is []
Published 5th July, 2017. Sponsored by Readable.com
Last updated 5th July, 2017. Measure your website readability!

Page 2 of 2.

http://www.cheatography.com/
http://www.cheatography.com/logcat/
http://www.cheatography.com/logcat/cheat-sheets/haskell-patterns
http://www.cheatography.com/logcat/
https://readable.com

	Haskell patterns Cheat Sheet - Page 1
	Compos­ition and applic­ation
	Monoid
	Functor
	Applic­ative

	Haskell patterns Cheat Sheet - Page 2
	Monad

