
Haskell patterns Cheat Sheet
by logcat via cheatography.com/27075/cs/12218/

Compos​ition and applic​ation

(.) ::​ (b​ ->​ c)​ ->​ (a​ ->​ b)​ -
>​ ​a ->​ c

function compos​ition

($) ::​ (a​ ->​ b)​ ->​ a ​-> b applic​ation operator, has low, right-​ass​oci​ative binding preced​ence, for example f $ g ​‐
$ h​ x ​ = ​ f ​(g ​(h x))

Monoid

typeclass where empty/​append are defined

mempty​ :​: M​onoid a => a identity of mappend (mappend mempty x = x)

mappend :: Monoid a => a -> a -> a append two monoids (assoc​iative: brackets does not matter)
mappend x (mappend y z) = mappend (mappend x y) z

<> ​ ​ :​: M​onoid m => m -> m -> m infix synonym for mappend ("​he" <> "​llo​")

mconcat :: [a] -> a fold list using mappend and mempty

Functor

typeclass where fmap (map/<$>) is defined

should satisfy laws fmap id == id
fmap (f . g) == fmap f . fmap g

fmap :: Functor f => (a -> b) -> f a -> f b map function over functor
fmap (+1) (Just 3) is Just 4

<$> :: Functor f => (a -> b) -> f a -> f b function mapped over functor
infix synonym for fmap
(+1) <$> (Just 3) is Just 4

Applic​ative

typeclass where pure/<*> are defined
have Functor as super class every instance of Applic​ative must have instance of Functor

so fmap (map/<$>) can be used

pure :: Applic​ative f => a -> f a create an instance of Applicative
pure 3 :: [Int] is [3]
pure 3 :: Maybe Int is Just 3
pure (+3) :: Maybe (Int -> Int) is Just a function from Int
to Int
pure (+3) :: [Int -> Int] is list of function
pure 1 :: IO Int is how it is printed in ghci

(<*​>) :: Applic​ative f => f (a -> b) -> f a -> f
b

sequential applic​ation / apply
Just (+1) <*> Just 1 :: Maybe Int is Just 2
[(+1), (+2)] <*> [0] :: [Int] is [1, 2]

By logcat
cheatography.com/logcat/

Published 5th July, 2017.
Last updated 5th July, 2017.
Page 1 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/logcat/
http://www.cheatography.com/logcat/cheat-sheets/haskell-patterns
http://www.cheatography.com/logcat/
https://readable.com

Haskell patterns Cheat Sheet
by logcat via cheatography.com/27075/cs/12218/

Monad

typeclass
have Applic​ative as super class every instance of Monad must have instance of Applic​ative and Functor

so fmap (map/<$>) and <*>/pure can be used

return :: Monad m => a -> m a is pure

(>>) :: Monad m => m a -> m b -> m b sequen​tially compose two monads, first is usually
Just 2 >> Just 3 is Just 3
Nothing >> Just 3 is Nothing
[9, 9] >> [0, 0, 0] is [0,0,0​,0,0,0]

(>>=) :: Monad m => m a -> (a -> m b) -> m b bind, sequen​tially compose two monads, value of first passed as argument to
the second
Just 3 >>= \x -> Just (x + 1) is Just 4
Nothing >>= \x -> Just (x + 1) is Nothing
[0, 0] >>= \x -> [x + 1] is [1, 1]
[0, 0] >>= \x -> [x + 1, 2] is [1,2,1,2]
[] >>= \x -> [x + 1] is []

By logcat
cheatography.com/logcat/

Published 5th July, 2017.
Last updated 5th July, 2017.
Page 2 of 2.

Sponsored by Readable.com
Measure your website readability!
https://readable.com

http://www.cheatography.com/
http://www.cheatography.com/logcat/
http://www.cheatography.com/logcat/cheat-sheets/haskell-patterns
http://www.cheatography.com/logcat/
https://readable.com

	Haskell patterns Cheat Sheet - Page 1
	Compos­ition and applic­ation
	Monoid
	Functor
	Applic­ative

	Haskell patterns Cheat Sheet - Page 2
	Monad

