Composition and application

function composition	
-> C	
(\$) : : (a -> b) -> a -> b	application operator, has low, right-associative binding precedence, for example
Monoid	
typeclass where empty/append are defined	
mempty : : Monoid a => a	identity of mappend (mappend mempty $\mathrm{x}=\mathrm{x}$)
mappend : : Monoid a $=>$ a $->\mathrm{a}->\mathrm{a}$	append two monoids (associative: brackets does not matter) mappend x (mappend y z) = mappend (mappend $\mathrm{x} y$) z
<> : : Monoid m => m -> m -> m	infix synonym for mappend ("he" <> "llo")
mconcat : : [a] -> a	fold list using mappend and mempty

Functor

typeclass where fmap (map/<\$>) is defined
should satisfy laws
fmap id == id
fmap ($f \cdot g$) == fmap f. fmap g
map function over functor
fmap (+1) (Just 3) is Just 4
function mapped over functor
infix synonym for fmap
(+1) <\$> (Just 3) is Just 4

Applicative

typeclass where pure/<*> are defined
have Functor as super class
pure :: Applicative $\mathrm{f}=>\mathrm{a}$-> f a
every instance of Applicative must have instance of Functor so fmap (map/<\$>) can be used
create an instance of Applicative
pure 3 :: [Int] is [3]
pure 3 :: Maybe Int is Just 3
pure (+3) :: Maybe (Int -> Int) is Just a function from Int to Int
pure (+3) :: [Int -> Int] is list of function
pure 1 :: IO Int is how it is printed in ghci
sequential application / apply
Just (+1) <*> Just 1 :: Maybe Int is Just 2
$[(+1),(+2)]$ <*> [0] :: [Int] is [1, 2]

By logcat

cheatography.com/logcat/

Published 5th July, 2017.

Last updated 5th July, 2017.
Page 1 of 2 .

Sponsored by Readability-Score.com

Measure your website readability!
https://readability-score.com

```
Monad
typeclass
have Applicative as super class every instance of Monad must have instance of Applicative and Functor
    so fmap (map/<$>) and <*>/pure can be used
```


return : : Monad m => a -> m a

(\gg) : : Monad $\mathrm{m}=>\mathrm{m} \mathrm{a}->\mathrm{mb}->\mathrm{mb}$
is pure
sequentially compose two monads, first is usually
Just $2 \gg$ Just 3 is Just 3
Nothing >> Just 3 is Nothing
$[9,9]>[0,0,0]$ is $[0,0,0,0,0,0]$
$(\gg=):$ Monad $m=>m$ a $->(\mathrm{a}->\mathrm{mb})->\mathrm{mb}$
bind, sequentially compose two monads, value of first passed as argument to the second Just $3 \gg=\backslash x->$ Just $(x+1)$ is Just 4

Nothing $\gg=\backslash x->$ Just $(x+1)$ is Nothing
$[0,0] \gg=\backslash x \rightarrow[x+1]$ is $[1,1]$
$[0,0] \gg=\backslash x \rightarrow[x+1,2]$ is $[1,2,1,2]$
[] $\gg=\backslash \mathrm{x} \rightarrow[\mathrm{x}+1]$ is []

By logcat

cheatography.com/logcat/

Published 5th July, 2017.
Last updated 5th July, 2017.
Page 2 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

