
Haskell patterns Cheat Sheet
by logcat via cheatography.com/27075/cs/12218/

Compos ition and applic ation

(.) : : (b - > c) - > (a - > b) - > a
- > c

function compos ition

($) : : (a - > b) - > a -> b applic ation operator, has low, right- ass oci ative binding preced ence, for example
f $ g $ h x = f (g (h x))

Monoid

typeclass where empty/ append are defined

mempt y :: Monoid a => a identity of mappend (mappend mempty x = x)

mappe nd :: Monoid a => a -> a -> a append two monoids (assoc iative: brackets does not matter)
mappend x (mappend y z) = mappend (mappend x y) z

<> :: Monoid m => m -> m -> m infix synonym for mappend ("h e" <> " llo ")

mconc at :: [a] -> a fold list using mappend and mempty

Functor

typeclass where fmap (map/< $>) is defined

should satisfy laws fmap id == id

fmap (f . g) == fmap f . fmap g

fmap :: Functor f => (a -> b) -> f a -> f b map function over functor
fmap (+1) (Just 3) is Just 4

<$ > :: Functor f => (a -> b) -> f a -> f b function mapped over functor
infix synonym for fmap

(+1) <$> (Just 3) is Just 4

Applic ative

typeclass where pure/< *> are defined

have Functor as super class every instance of Appli cative must have instance of Functor

so fmap (map/< $>) can be used

pure :: Applic ative f => a -> f a create an instance of Applicative
pure 3 :: [Int] is [3]

pure 3 :: Maybe Int is Just 3

pure (+3) :: Maybe (Int -> Int) is Just a function from Int to Int

pure (+3) :: [Int -> Int] is list of function

pure 1 :: IO Int is how it is printed in ghci

(< *>) :: Applic ative f => f (a -> b) -> f a -> f b sequential applic ation / apply
Just (+1) <*> Just 1 :: Maybe Int is Just 2

[(+1), (+2)] <*> [0] :: [Int] is [1, 2]

By logcat
cheatography.com/logcat/

Published 5th July, 2017.
Last updated 5th July, 2017.
Page 1 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/logcat/
http://www.cheatography.com/logcat/cheat-sheets/haskell-patterns
http://www.cheatography.com/logcat/
https://readability-score.com

Haskell patterns Cheat Sheet
by logcat via cheatography.com/27075/cs/12218/

Monad

typeclass
have Appli cative as super class every instance of Monad must have instance of Appli cative and Functor

so fmap (map/< $>) and <* >/ pure can be used

return :: Monad m => a -> m a is pure

(> >) :: Monad m => m a -> m b -> m b sequen tially compose two monads, first is usually
Just 2 >> Just 3 is Just 3

Nothing >> Just 3 is Nothing

[9, 9] >> [0, 0, 0] is [0,0, 0,0 ,0,0]

(> >=) :: Monad m => m a -> (a -> m b) -> m b bind, sequen tially compose two monads, value of first passed as argument to the second
Just 3 >>= \x -> Just (x + 1) is Just 4

Nothing >>= \x -> Just (x + 1) is Nothing

[0, 0] >>= \x -> [x + 1] is [1, 1]

[0, 0] >>= \x -> [x + 1, 2] is [1,2,1,2]

[] >>= \x -> [x + 1] is []

By logcat
cheatography.com/logcat/

Published 5th July, 2017.
Last updated 5th July, 2017.
Page 2 of 2.

Sponsored by Readability-Score.com
Measure your website readability!
https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/logcat/
http://www.cheatography.com/logcat/cheat-sheets/haskell-patterns
http://www.cheatography.com/logcat/
https://readability-score.com

	Haskell patterns Cheat Sheet - Page 1
	Composition and application
	Monoid
	Functor
	Applicative

	Haskell patterns Cheat Sheet - Page 2
	Monad

