Haskell patterns Cheat Sheet
by logcat via cheatography.com/27075/cs/12218/

Cheatography

(.) :+ (b -> ¢) -> (a -> b) - function composition

($) ::+ (a -> b) -> a ->0b application operator, has low, right-associative binding precedence, for example £ $ g -
$h x = £ (g (hx))

typeclass where empty/append are defined
mempty : : M onoid a => a identity of mappend (mappend mempty x = x)

mappend :: Monoid a => a -> a -> a append two monoids (associative: brackets does not matter)
mappend x (mappend y z) = mappend (mappend x y) z

<> : : Monoidm=>m ->m -> m infix synonym for mappend (" he™ <> " 1lo ")

mconcat :: [a] -> a fold list using mappend and mempty

typeclass where fmap (map/<$>) is defined

should satisfy laws fmap id == 1id
fmap (f . g) == fmap f . fmap g
fmap :: Functor f => (a -> b) -> f a -> £ b map function over functor

fmap (+1) (Just 3) is Just 4

<$> :: Functor f => (a ->b) -> fa ->fb function mapped over functor
infix synonym for fmap
(+1) <$> (Just 3) isJust 4

typeclass where pure/<*> are defined
have Functor as super class every instance of Applic ative must have instance of Functor
SO fmap (map/<$>) can be used

pure :: Applic ative f => a -> f a create an instance of Applicative
pure 3 :: [Int] is [3]
pure 3 :: Maybe Intis Just 3
pure (+3) :: Maybe (Int -> Int) is Just a function from Int
to Int
pure (+3) :: [Int -> Int] is listof function
pure 1 :: IO Int ishow itis printedin ghci
(<* >) :: Applic ative £ => £ (a -> b) -> £ a -> £ sequential application / apply
b Just (+1) <*> Just 1 :: Maybe Intis Just 2
[(+1), (+2)] <*> [0] :: [Int]is[1, 2]

By logcat Published 5th July, 2017. Sponsored by ApolloPad.com
cheatography.com/logcat/ Last updated 5th July, 2017. Everyone has a novel in them. Finish
Page 1 of 2. Yours!

https://apollopad.com

http://www.cheatography.com/
http://www.cheatography.com/logcat/
http://www.cheatography.com/logcat/cheat-sheets/haskell-patterns
http://www.cheatography.com/logcat/
https://apollopad.com

Cheatography [

via
Monad
typeclass
have Applic ative as super class every instance of Monad must have instance of Applic ative and Functor
s0 fmap (map/<$>) and <*>/pure can be used
return :: Monad m => a -> m a is pure
(>>) :: Monad m =>ma ->mb ->mb sequentially compose two monads, first is usually
Just 2 >> Just 3is Just 3
Nothing >> Just 3is Nothing
[9, 9] >> [0, 0, 0]is[0,0,0 ,0,0,0]
(>>=) :: Monad m => m a -> (a ->mb) ->m b bind, sequentially compose two monads, value of first passed as argument to
the second
Just 3 >>= \x -> Just (x + 1) isJust 4
Nothing >>= \x -> Just (x + 1) isNothing
[0, 0] >>= \x -> [x + 1lis[1, 1]
[0, 0] >>= \x -> [x + 1, 2]is[1,2,1,2]
[1 >=\x -> [x + 1]is []
Published 5th July, 2017. Sponsored by ApolloPad.com
Last updated 5th July, 2017. Everyone has a novel in them. Finish

Page 2 of 2. Yours!

http://www.cheatography.com/
http://www.cheatography.com/logcat/
http://www.cheatography.com/logcat/cheat-sheets/haskell-patterns
http://www.cheatography.com/logcat/
https://apollopad.com

	Haskell patterns Cheat Sheet - Page 1
	Compos­ition and applic­ation
	Monoid
	Functor
	Applic­ative

	Haskell patterns Cheat Sheet - Page 2
	Monad

