Haskell patterns Cheat Sheet
by logcat via cheatography.com/27075/cs/12218/

Cheatography

(.) :: (b ->c) -> (a ->b) ->a function composition

($) :: (a ->b) ->a ->b application operator, has low, right-associative binding precedence, for example
fghx = £ (g (hx))

typeclass where empty/append are defined

mempty :: Monoid a => a identity of mappend (mappend mempty x = x)

mappend :: Monoid a => a -> a -> a append two monoids (associative: brackets does not matter)
mappend x (mappend y z) = mappend (mappend X y) z

<> :: Monoid m =>m ->m ->m infix synonym for mappend (*he" <> "1lo")

mconcat :: [a] -> a fold list using mappend and mempty

typeclass where fmap (map/<$>) is defined

should satisfy laws fmap id == id
fmap (£ . g) == fmap £ . fmap g
fmap :: Functor £ => (a ->b) -> f a -> £b map function over functor

fmap (+1) (Just 3) isJust 4

<$> :: Functor £ => (a -> b) -> f a -> £ b function mapped over functor
infix synonym for fmap

(+1) <$> (Just 3) isJust 4

typeclass where pure/<*> are defined
have Functor as super class every instance of Applicative must have instance of Functor

so fmap (map/<$>) can be used

pure :: Applicative f => a -> f a create an instance of Applicative
pure 3 :: [Int] is [3]
pure 3 :: Maybe Int isJust 3
pure (+3) :: Maybe (Int -> Int) isJust a function from Intto Int
pure (+3) :: [Int -> Int] islistof function
pure 1 :: IO Int ishow itis printedin ghci
(<*>) :: Applicative £ => £ (a -> b) -> f a -> £ Db sequential application / apply
Just (+1) <*> Just 1 :: Maybe Int isJust 2
[(+1), (+2)] <*> [0] :: [Int] is [1, 2]
By logcat Published 5th July, 2017. Sponsored by Readability-Score.com
cheatography.com/logcat/ Last updated 5th July, 2017. Measure your website readability!

Page 1 of 2. https://readability-score.com

http://www.cheatography.com/
http://www.cheatography.com/logcat/
http://www.cheatography.com/logcat/cheat-sheets/haskell-patterns
http://www.cheatography.com/logcat/
https://readability-score.com

Cheatography

by via
Monad
typeclass
have Applicative as super class every instance of Monad must have instance of Applicative and Functor
S0 fmap (map/<$>) and <*>/pure can be used
return :: Monad m => a -> m a is pure
(>>) :: Monad m => m a ->mb ->mb sequentially compose two monads, first is usually
Just 2 >> Just 3 isJust 3
Nothing >> Just 3 isNothing
(9, 91 >> [o, o, oj is[0,0,0,0,0,0]
(>>=) :: Monad m => m a -> (a ->mb) ->mb bind, sequentially compose two monads, value of first passed as argument to the second
Just 3 >>= \x -> Just (x + 1) isJust 4
Nothing >>= \x -> Just (x + 1) isNothing
[0, 0] >>=\x -> [x + 1] is [1, 1]
[0, 0] >>=\x -> [x + 1, 2] is[1,2,1,2]
[1 >>=\x -> [x + 1] is []
By logcat Published 5th July, 2017. Sponsored by Readability-Score.com
Last updated 5th July, 2017. Measure your website readability!

Page 2 of 2.

http://www.cheatography.com/
http://www.cheatography.com/logcat/
http://www.cheatography.com/logcat/cheat-sheets/haskell-patterns
http://www.cheatography.com/logcat/
https://readability-score.com

	Haskell patterns Cheat Sheet - Page 1
	Compos­ition and applic­ation
	Monoid
	Functor
	Applic­ative

	Haskell patterns Cheat Sheet - Page 2
	Monad

