Cheatography

Discrete Mathematics Lecture 1 Cheat Sheet by Lixxiu via cheatography.com/209065/cs/44952/

Definitions

Discrete : Different, independents, separate, not of same type

Discrete Mathematics (discrete structures) : Mathematical topic that are different,

independents, separate, not of same type

Integer : whole number without fraction

Even : even integer

Odd : odd integer

At least : same or more (more means bigger by value)

At most : same or less (less means smaller by value)

Non-negative: 0 or positive

Non-positive : 0 or negative

Increasing sequence : left to right values are always bigger (same not allowed)

Non-decreasing sequence : left to right values are same or bigger

Decreasing sequence: left to right values are always smaller (same not allowed)

Non-increasing sequence : left to right values are same or less

rational number : can be represented by the fraction (ratio) of two integers as p/q, where q is non-zero

irrational number : is a number that cannot be represented by a ratio of two integers

Real numbers : include integers, rational and irrational numbers

Decimal number : the number that we usually see and use (0, 1, 2...9)

Binary number : number has only two digits, (0 and 1)

Definitions (cont)

Absolute value of a number : is its value without sign

Equality : is another name of mathematical equation

Factorial : of a non-negative integer n (written as n!)

mod (also called modulus) of two integers a mod b is the remainder after a is divided by b

At least and At most

At least :

example 1: At least 12 (means 12 or more) 12 , 13 , 13.5 , 1000 etc example 2 : At least -4 -4 , -3.5 , 0 , 4 etc At most : example 1: At most 12 (means 12 or less) 12 , 11.99 , 10 ,0 ,-1 etc example 2 : At most -4 -4 , -4.1 , -5 , -10 etc

Definitions

Inequality means if the expression has no "=". Instead, it has <, \neq , >, \geq , \leq etc. Although \geq and \leq have "=" within them, they are still inequalities Definition of log is this: If a^x = y, then x = log_ay

Some warmup preliminaries

> and \geq: If a > b is correct, then a \geq b is also correct

If $a \ge b$ is correct, then a > b may not be correct, because it may happen that a = b

<, -, and Inverse

By Lixxiu cheatogra

 By Lixxiu
 Not published

 cheatography.com/lixxiu/
 Last updated

Not published yet. Last updated 11th November, 2024. Page 1 of 2.

<, -, and Inverse

If a < b is correct, then -a > -b is correct, **Inverse** of x is $\frac{1}{x}$. If a < b is correct, then (inverse of a) > (inverse of b) is correct, that means, $\frac{1}{a} > \frac{1}{b}$ is correct

Odd, even Integers

Addition and subtraction	
ſ	Ĵ
Not same type = odd	Same type = even
even + odd = odd.	odd + odd = even. even + even = even.
odd – even = odd.	odd – odd = even. even – even = even.
$\frac{\text{odd+odd}}{2} = \text{odd or even}$ $\frac{\text{even+even}}{2} = \text{odd or even}$ $\frac{\text{even+odd}}{2} = \frac{\text{Fraction (not even} \text{ or odd because is } \text{ not an integer)}}{2}$	Addition and subtraction Plus or minus one odd + 1 = even odd - 1 = even even + 1 = odd even -1 = odd

Even = 2k Odd = 2k+1 (for some integer k. k may be even or odd)

0 is even

Odd, even Integers

Note Non-negative and Non-positive

0 is not positive, not negative Non-negative and at least 0 are same Non-positive and at most 0 are same

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Cheatography

Discrete Mathematics Lecture 1 Cheat Sheet by Lixxiu via cheatography.com/209065/cs/44952/

It is also written as **a % b** (any even integer) % 2 = 0 (any odd integer) % 2 = 1

Ceil

 $\begin{bmatrix} k \end{bmatrix} = k$, if k integer $\begin{bmatrix} k \end{bmatrix} = next integer$, if k fraction

Ceil and floor

mod

Floo

 $\lfloor k \rfloor = k$, if k integer $\lfloor k \rfloor = previous$ integer, if k fraction

Mod means remainder

even%2 = 0 **odd**%2 = 1

increasing	L to R value are always bigger same not allowed type : 11 increasing values with same increase speed (rate) 11 increasing curve with different increasing speed at different places
Non- decreasing	L to R value are same or bigger same allowed increasing sequence is also non-decreasing
Decreasing	L to R value are always smaller same not allowed type : 1 \ decreasing values with same decreasing speed (rate) 2 \ decreasing curve with different decreasing speed at different places
Non-increasing	L to R value are same or smaller same allowed decreasing sequence is also non-increasing

The term increasing usually come with sequence

Numbers

Binary numbers have equivalent decimal values

For example: 00, 01, 10,11 are equivalent to 0, 1, 2, 3

log

Some **common formula** for log (here a, b, c > 0):

- log_a a = 1
 b^{log_b a} = a • $\log_a b = \frac{\log_c b}{\log_c a}$ • $\log_a b = \frac{1}{\log_b a}$ • $a^{\log_b c} = c^{\log_b a}$ • $\log_a b^n = n\log_a b$ • $\log_a(bc) = \log_a b + \log_a c$
- $\log_a(1/b) = -\log_a b$
- Next here

Not published yet. Last updated 11th November, 2024. Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com