

Discrete Mathematics Lecture 1 Cheat Sheet by Lixxiu via cheatography.com/209065/cs/44952/

Definitions

Discrete : Different, independents, separate, not of same type

Discrete Mathematics (discrete structures): Mathematical topic that are different, independents, separate, not of same type

Integer: whole number without fraction

Even: even integer

Odd: odd integer

At least: same or more (more means bigger by value)

At most : same or less (less means smaller by value)

Non-negative: 0 or positive

Non-positive: 0 or negative

Increasing sequence : left to right values are always bigger (same not allowed)

Non-decreasing sequence : left to right values are same or bigger

Decreasing sequence: left to right values are always smaller (same not allowed)

Non-increasing sequence : left to right values are same or less

rational number : can be represented by the fraction (ratio) of two integers as p/q, where q is non-zero

irrational number: is a number that cannot be represented by a ratio of two integers

Real numbers : include integers, rational and irrational numbers

Decimal number: the number that we usually see and use (0, 1, 2...9)

Binary number : number has only two digits, (0 and 1)

Definitions (cont)

Absolute value of a number : is its value without sign

Equality: is another name of mathematical equation

Factorial : of a non-negative integer n (written as n!)

mod (also called modulus) of two integers a mod b is the remainder after a is divided by

At least and At most

At least :

example 1: At least 12 (means 12 or more) 12, 13, 13.5, 1000 etc

example 2 : At least -4

-4, -3.5, 0, 4 etc

At most :

example 1: At most 12 (means 12 or less)

12 , 11.99 , 10 ,0 ,-1 etc example 2 : At most -4 -4 , -4.1 , -5 , -10 etc

Definitions

Inequality means if the expression has no "=". Instead, it has <, \neq , >, \geq , \leq etc.

Although \geq and \leq have "=" within them, they are still inequalities

Definition of \log is this: If $a^x = y$, then $x = \log_a y$

Some warmup preliminaries

> and ≥: If a > b is correct, then a \ge b is also correct

If $a \ge b$ is correct, then a > b may not be correct, because it may happen that a = b

<, -, and Inverse

If a < b is correct, then -a > -b is correct, Inverse of x is $\frac{1}{x}$ If a < b is correct, then (inverse of a) > (inverse of b) is correct, that means, $\frac{1}{a} > \frac{1}{b}$ is correct

Not published yet.

Last updated 11th November, 2024.

Page 1 of 2.

<, -, and Inverse

If a < b is correct, then -a > -b is correct, Inverse of x is $\frac{1}{x}$
If a < b is correct, then (inverse of a) > (inverse of b) is correct, that means, $\frac{1}{a} > \frac{1}{b}$ is correct

Odd, even Integers

Even = 2k

Odd = 2k+1

(for some integer k. k may be even or odd

0 is even

Odd, even Integers

Note Non-negative and Non-positive

0 is not positive, not negative

Non-negative and at least 0 are same

Non-positive and at most 0 are same

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

By **Lixxiu**

cheatography.com/lixxiu/

Discrete Mathematics Lecture 1 Cheat Sheet by Lixxiu via cheatography.com/209065/cs/44952/

Increasing and decreasing Same in Community 1 \ \ \text{increasing values with same increase speed (rate)} \ 2 \ \ \text{increasing curve with different increasing speed at different places} \) L to R value are same or bigger same allowed Increasing sequence is also non-decreasing L to R value are always smaller same not allowed L to R value are same or smaller same allowed decreasing sequence is also non-in-

The term increasing usually come with sequence

Numbers

Binary numbers have equivalent decimal values

For example: 00, 01, 10,11 are equivalent to 0, 1, 2, 3

log

Some **common formula** for log (here a, b, c > 0):

- log_a a = 1
 b^{log_b a} = a
- $\log_a b^n = n\log_a b$
- $\log_a(bc) = \log_a b + \log_a c$
- $\log_a(1/b) = -\log_a b$ • Next here
- $\log_a b = \frac{\log_c b}{\log_c a}$ $\log_a b = \frac{1}{\log_b a}$ $a^{\log_b c} = c^{\log_b a}$

By Lixxiu

cheatography.com/lixxiu/

Not published yet. Last updated 11th November, 2024. Page 2 of 2.

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com